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My expertise lies in numerical analysis and scientific computing, specifically
numerical linear algebra. I have varied interests, but mostof my work has centered
on modeling subsurface flow and transport problems.

Thesis work

My thesis was about a novel iterative solver for symmetric, positive-definite, linear
systems. Put simply, solving a linear system is a nonlinear process: it requires
division. At first blush, one might expect that iterative algorithms for solving
linear systems can achieve superlinear convergence since Newton’s method does
for nonlinear ones. However, only a handful of algorithms for linear problems
have this property.

My algorithm can be described in a purely algebraic fashion and can be ap-
plied to any symmetric positive definite linear system. However, it is easier to
describe in the context of discretizations of second order elliptic partial differ-
ential equations. Indeed, the original motivating problemwas solving Darcy flow
problems; in the problems we consider there are two challenges — high resolution
and heterogeneous data — that make the use of conventional solvers impractical.
That is, the linear systems that result from discretizing the flow equations are very
poorly conditioned (and not just poorly scaled).

Simple coarsening of the problem gives a faster approximation of the flow but
sometimes loses essential details. The algorithm obtains the fully resolved ap-
proximation but only iterates on a sequence of coarsened problems. The sequence
is chosen by optimizing the shapes of the coarse finite element basis functions.
Since we optimize the basis (and not the solution directly),we trade solving a
linear system for solving a nonlinear optimization problem. Intuition tells us that
a nonlinear problem is more difficult to solve. However, we dothis because we
trade a large linear system for a small nonlinear one, and this nonlinear problem
has a special structure we can further exploit.

As a stand-alone method, the algorithm converges globally and monotonically
with a quadratic asymptotic rate. Per-iteration costs are cheap: a coarse-scale
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solve and a fine-scale residual calculation. However, it is assumed that an exter-
nally provided error estimate is available at each step. Thealgorithm could be
effective as an accelerator: an inner iteration of another iterative method would
provide an error estimate after which an outer iteration of the new method would
act on that estimate. I hope to investigate this further.

More excitingly, some computational experience has shown the number of it-
erations needed is independent of the resolution and heterogeneity of the medium
(the condition number of the problem). A proof of this insensitivity is a target
of future research. Also, I know how to adapt my techniques tosolving equilib-
rium systems; however, I have yet to write a proof of convergence for the new
technique.

Other multiscale finite element research

Along with the research I have done for my thesis, I have worked extensively
with my advisor on issues in using multiscale finite elements. For instance, we
recently came to the realization that several multiscale finite element schemes do
not converge under refinement. The coarse basis shapes in these schemes are cho-
sen during a simulation in an attempt to match the shape of thesolution (features
of the flow field). This is a desirable aim; it tends to improve accuracy. However,
the resulting shapes are not interpolatory; this accounts for the lack of conver-
gence under refinement. This non-convergence is not just of theoretical interest; it
is an issue of some practical importance because the threshold where errors stop
decreasing is near the size of typical industrial simulations.

We have also recently developed a homogenization-inspiredfamily of mul-
tiscale macro-elements for Darcy flow problems. One issue that we wanted to
address is variational multiscale elements do not allow for(or, rather, do not give
a means for systematically deriving) variation along coarse element boundaries.
As mentioned above, various fixes have been proposed but can result either in
non-conforming methods, non-convergence, or both. A fix comes from homoge-
nization theory: there is an operator that tells us how to modify coarse shapes over
their whole support (as compared to variational multiscaletheory which just tells
us to modify them on the interior of coarse elements).

Part of the motivation was to obtain interelement fluxes that, in the limit, are
interpolatory and so avoid the problem mentioned above. Another motivation
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is a result from homogenization theory that the coarse-scale part of the solution
is smoother than the fine-scale part; this also jibes with physical intuition. One
trouble is increased continuity requirements for the coarse part, but we hope that
increased accuracy compensates for the greater number of degrees of freedom
needed. That is, we expect it to be more regular hence it wouldbenefit from an
element that reflects that higher degree of regularity. There are certainly many
experiments and much research we would like to try in this direction.

Other potential research

I am interested in expanding my knowledge of applications ofmultiscale finite
elements and variational multiscale methods in other fields. In particular, I am
currently learning about the use of multiscale for stabilization in computational
fluid dynamics and global climate models, and about the use ofmultiscale for
incorporating subscale physical models.

More tangentially related to my current research, I was recently introduced to
the problem of stitching together images to form a panorama.Usually the original
image edges result in noticeable transitions in the panorama (even if there is good
registration of features between the images). A popular idea is to use the inverse
Laplacian to smooth the gradients of the images together; itis a open research
question on how best to compute this smoothing (or an approximation thereto).

I have also done a little research on the worm blanket problem: find the small-
est blanket that can cover a (vanishingly thin) worm if the worm is allowed to take
up any position in the plane. With the assumption that any placement of a worm
configuration under the blanket can be continuously (smoothly) deformed into any
other configuration, one can pose this as a variational minimization problem. It
can be approximated using segmented wriggling worms, and minimal blankets
constructed using ODE solvers. Aside from keeping worms warm through the
winter, this problem has applications in physics, chemistry, and biology. For in-
stance, in a three-dimensional version, one might ask the question: what is the
smallest nucleus that can accommodate a given length of DNA if the DNA strand
is allowed to take on any configuration? Or: what is the smallest working volume
needed to assemble a protein of a given length of peptides if the ultimate shape of
the protein is not known in advance?
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