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Chapter 2

N -Body Problems with 2 ≤ N ≤ 100

2.1. Introduction

In general, we will wish to consider N -body problems in which N may be
relatively large and relatively small. N -body problems with 2 ≤ N ≤ 100
will be considered to be small and we will begin with these. For N = 2, and
under important restrictions, it may be possible to solve related problems
in closed form. This is the case, for example, in astromechanics (van de
Kamp (1964)). Inclusion of various important constraints, however, then
demands numerical methodology.

Now, if N is small, we would like to do a very good job in solving the
N -body problem. By this we mean that we would like not only to solve
the problem with accuracy, but we would also like to preserve numerically
any basic physical invariants of the system. To do this in detail, we con-
centrate theoretically and computationally on the 3-body problem, because
it contains all the difficulties of the general N -body problem. The entire
discussion extends in a natural way to the general N -body problem, and,
in particular, to the more simplistic 2-body problem.

For i = 1, 2, 3, let Pi of mass mi be at �ri = (xi, yi, zi) at time t. Let
the positive distance between Pi and Pj , i �= j, be rij = rji. Let φ = φij =
φ(rij), given in ergs, be a potential for the pair Pi, Pj . Then the force on
Pi due to Pj is

�Fi = − ∂φ

∂rij

�ri − �rj

rij
,

and in this section we assume Newtonian dynamical differential equations
for the 3-body problem, and these are

mi
d2�ri

dt2
= − ∂φ

∂rij

�ri − �rj

rij
− ∂φ

∂rik

�ri − �rk

rik
, i = 1, 2, 3 (2.1)

15
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where i = 1 implies j = 2, k = 3; i = 2 implies j = 1, k = 3; i = 3 implies
j = 1, k = 2.

The following summary theorem incorporates several well known results.

Theorem 2.1. (Goldstein (1980)) System (2.1) conserves energy, linear
momentum, and angular momentum. It is also covariant under translation,

rotation, and uniform relative motion of coordinate frames.

2.2. Numerical Methodology

In general, (2.1) will be nonlinear and will require numerical methodology.
In order to solve an initial value problem for (2.1) numerically, we first
rewrite it as the equivalent first order system

d�ri

dt
= �vi, i = 1, 2, 3 (2.2)

mi
d�vi

dt
= − ∂φ

∂rij

�ri − �rj

rij
− ∂φ

∂rik

�ri − �rk

rik
, i = 1, 2, 3. (2.3)

Our numerical formulation now proceeds as follows. For ∆t > 0, let tn =
n(∆t), n = 0, 1, 2, . . . . At time tn, let Pi be at �ri,n = (xi,n, yi,n, zi,n) with
velocity �vi,n = (vi,x,n, vi,y,n, vi,z,n). Denote the distances ‖P1P2‖, ‖P1P3‖,
‖P2P3‖ by r12,n, r13,n, r23,n, respectively. Differential equations (2.2) and
(2.3) are now approximated, respectively, by the difference equations

�ri,n+1 − �ri,n

∆t
=

�vi,n+1 + �vi,n

2
(2.4)

mi
�vi,n+1 − �vi,n

∆t
= −φ(rij,n+1) − φ(rij,n)

rij,n+1 − rij,n

�ri,n+1 + �ri,n − �rj,n+1 − �rj,n

rij,n+1 + rij,n

− φ(rik,n+1) − φ(rik,n)
rik,n+1 − rik,n

�ri,n+1 + �ri,n − �rk,n+1 − �rk,n

rik,n+1 + rik,n
.

(2.5)

Note that the force is approximated, not the potential. We take the very
same potential as in continuum mechanics, the significance of which will be
seen shortly. Consistency follows immediately as ∆t → 0. Also note that, for
the present, we assume in (2.5) that rlm,n+1 �= rlm,n, for any choices of l, m.

System (2.4), (2.5) consists of 18 implicit equations for the unknowns
xi,n+1, yi,n+1, zi,n+1, vi,x,n+1, vi,y,n+1, vi,z,n+1 in the 18 knowns xi,n, yi,n,
zi,n, vi,x,n, vi,y,n, vi,z,n and is solvable readily by Newton’s method, as
described in Appendix II.
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2.3. Conservation Laws

Because of its physical significance, let us show now that the numerical
solution generated by (2.4) and (2.5) conserves the same energy, linear
momentum, and angular momentum as does (2.1).

Consider first energy conservation. Define

WN =
N−1∑
n=0

{
3∑

i=1

mi(�ri,n+1 − �ri,n) · (�vi,n+1 − �vi,n)/∆t

}
. (2.6)

Note immediately relative to (2.6) that, since we are considering specif-
ically the three-body problem, the symbol N in summation (2.6) is, in this
section only, a numerical time index. Then insertion of (2.4) into (2.6) and
simplification yields

WN =
1
2
m1(v1,N )2 +

1
2
m2(v2,N )2 +

1
2
m3(v3,N )2

− 1
2
m1(v1,0)2 − 1

2
m2(v2,0)2 − 1

2
m3(v3,0)2,

so that

WN = KN − K0. (2.7)

Insertion of (2.5) into (2.6) implies, with some tedious algebraic
manipulation,

WN =
N−1∑
n=0

(−φ12,n+1 − φ13,n+1 − φ23,n+1 + φ12,n + φ13,n + φ23,n)

so that

WN = −φN + φ0. (2.8)

Elimination of WN between (2.7) and (2.8) then yields conservation of
energy, that is,

KN + φN = K0 + φ0, N = 1, 2, 3, . . . .

Moreover, since K0 and φ0 depend only on initial data, it follows that
K0 and φ0 are the same in both the continuous and the discrete cases, so
that the energy conserved by the numerical method is exactly that of the
continuous system. Note, in addition, that the proof is independent of ∆t.
Thus, we have proved the following theorem.
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Theorem 2.2. Independently of ∆t, the numerical method of Section 2.2
is energy conserving, that is,

KN + φN = K0 + φ0, N = 1, 2, 3, . . . .

To show the conservation of linear momentum, we proceed as follows.
The linear momentum �Mi(tn) = �Mi,n of Pi at tn is defined to be the vector

�Mi,n = mi(vi,n,x, vi,n,y, vi,n,z). (2.9)

The linear momentum �Mn of the three-body system at time tn is defined
to be the vector

�Mn =
3∑

i=1

�Mi,n. (2.10)

Now, from (2.5),

m1(�v1,n+1 − �v1,n) + m2(�v2,n+1 − �v2,n) + m3(�v3,n+1 − �v3,n) ≡ �0.

Thus, for n = 0, 1, 2, . . . ,

m1(v1,n+1,x − v1,n,x) + m2(v2,n+1,x − v2,n,x) + m3(v3,n+1,x − v3,n,x) = 0.
(2.11)

Summing both sides of (2.11) from n = 0 to n = N − 1 implies

m1v1,N,x + m2v2,N,x + m3v3,N,x = C1, N ≥ 1 (2.12)

in which

m1v1,0,x + m2v2,0,x + m3v3,0,x = C1. (2.13)

Similarly,

m1v1,N,y + m2v2,N,y + m3v3,N,y = C2 (2.14)

m1v1,N,z + m2v2,N,z + m3v3,N,z = C3 (2.15)

in which

m1v1,0,y + m2v2,0,y + m3v3,0,y = C2 (2.16)

m1v1,0,z + m2v2,0,z + m3v3,0,z = C3. (2.17)

Thus,

�Mn =
3∑

i=1

�Mi,n = (C1, C2, C3) = �M0, n = 1, 2, 3, . . . ,
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which is the classical law of conservation of linear momentum. Note that
�M0 depends only on the initial data. Thus we have the following theorem.

Theorem 2.3. Independently of ∆t, the numerical method of Section 2.2
conserves linear momentum, that is,

�Mn = �M0, n = 1, 2, 3, . . . .

To show the conservation of angular momentum, we proceed as follows.
The angular momentum �Li,n of Pi at tn is defined to be the cross product
vector

�Li,n = mi(�ri,n × �vi,n). (2.18)

The angular momentum of a three-body system at tn is defined to be the
vector

�Ln =
3∑

i=1

�Li,n. (2.19)

It then follows readily that

�Li,n+1 − �Li,n

= mi(�ri,n+1 + �ri,n) × (�vi,n+1 − �vi,n)

= mi

[
(�ri,n+1 − �ri,n) × 1

2
(�vi,n+1 + �vi,n)

+
1
2
(�ri,n+1 + �ri,n) × (�vi,n+1 − �vi,n)

]

= mi

[
(�ri,n+1 − �ri,n) × 1

∆t
(�ri,n+1 − �ri,n) +

1
2
(�ri,n+1 + �ri,n) × �ai,n∆t

]

=
1
2
(∆t)(�ri,n+1 + �ri,n) × �Fi,n.

For notational simplicity, set

�Ti,n =
1
2
(�ri,n+1 + �ri,n) × �Fi,n.

It follows readily, with some algebraic manipulation, that

�Tn = �T1,n + �T2,n + �T3,n = 0.

Thus, one finds

�Ln+1 − �Ln = �0, n = 0, 1, 2, 3, . . . ,
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so that

�Ln = �L0, n = 1, 2, 3, . . . ,

which implies, independently of ∆t, the conservation of angular momentum.
Note again that �L0 depends only on the initial data. Thus the following
theorem has been proved.

Theorem 2.4. Independently of ∆t, the numerical method of Section 2.2
conserves angular momentum, that is

�Ln = �L0, n = 1, 2, 3, . . . .

2.4. Covariance

We begin the discussion of Newtonian covariance by stating the basic
concepts. When a dynamical equation is structurally invariant under
a transformation, the equation is said to be covariant or symmetric. The
transformations we will consider are the basic ones, namely, translation,
rotation, and uniform relative motion. We will concentrate on two dimen-
sional systems, because the related techniques and results extend directly
to three dimensions. A general Newtonian force will be considered. Finally,
we will concentrate on the motion of a single particle P of mass m, with
extension to the N -body problem following in a natural way. And though
the assumptions just made may seem to be excessive, it will be seen
shortly that they render the required mathematical methodology readily
transparent.

Suppose now that a particle P of mass m is in motion in the XY

plane and that for ∆t > 0 its motion from given initial data is determined
by a force �F (tn) = �Fn = (Fn,x, Fn,y) and by the dynamical difference
equations

Fn,x = m(vn+1,x − vn,x)/(∆t) (2.20)

Fn,y = m(vn+1,y − vn,y)/(∆t). (2.21)

The fundamental problem that we now consider is as follows. Let
x = f1(x∗, y∗), y = f2(x∗, y∗) be a change of coordinates. Under this trans-
formation, let Fn,x = F ∗

n,x∗ , Fn,y = F ∗
n,y∗ . Then we will want to prove that
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in the X∗Y ∗ system the dynamical equations of motion are

F ∗
n,x∗ = m(vn+1,x∗ − vn,x∗)/(∆t) (2.22)

F ∗
n,y∗ = m(vn+1,y∗ − vn,y∗)/(∆t), (2.23)

which will establish covariance.
In consistency with (2.4), we assume that

xn+1 − xn

∆t
=

vn+1,x + vn,x

2
,

x∗
n+1 − x∗

n

∆t
=

vn+1,x∗ + vn,x∗

2
(2.24)

yn+1 − yn

∆t
=

vn+1,y + vn,y

2
,

y∗
n+1 − y∗

n

∆t
=

vn+1,y∗ + vn,y∗

2
. (2.25)

Relative to (2.24) and (2.25), the following lemma will be of value.

Lemma 2.1. Equations (2.24) and (2.25) imply

v1,x =
2

∆t
(x1 − x0) − v0,x; v1,x∗ =

2
∆t

(x∗
1 − x∗

0) − v0,x∗ (2.26)

v1,y =
2

∆t
(y1 − y0) − v0,y; v1,y∗ =

2
∆t

(y∗
1 − y∗

0) − v0,y∗ (2.27)

vn,x =
2

∆t


xn + (−1)nx0 + 2

n−1∑
j=1

(−1)jxn−j


 + (−1)nv0,x, n ≥ 2

(2.28)

vn,x∗ =
2

∆t


x∗

n + (−1)nx∗
0 + 2

n−1∑
j=1

(−1)jx∗
n−j


 + (−1)nv0,x∗ , n ≥ 2

(2.29)

vn,y =
2

∆t


yn + (−1)ny0 + 2

n−1∑
j=1

(−1)jyn−j


 + (−1)nv0,y, n ≥ 2

(2.30)

vn,y∗ =
2

∆t


y∗

n + (−1)ny∗
0 + 2

n−1∑
j=1

(−1)jy∗
n−j


 + (−1)nv0,y∗ , n ≥ 2.

(2.31)

Proof. Equations (2.26) follow directly from (2.24) with n = 0. Equa-
tions (2.27) follow directly from (2.25) with n = 0. Equations (2.28)–(2.31)
follow readily by mathematical induction. �
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Theorem 2.5. Equations (2.20) and (2.21) are covariant relative to the
translation

x∗ = x − a, y∗ = y − b; a, b constants.

Proof. Define v0,x = v0,x∗ , v0,y = v0,y∗ . Then, from (2.26) in Lemma 2.1,

v1,x =
2

∆t

[
(x∗

1 + a) − (x∗
0 + a)

] − v0,x∗ = v1,x∗ .

Similarly,

v1,y = v1,y∗

For n > 1, (2.28) and (2.29) in Lemma 2.1 yield

vn,x =
2

∆t


(x∗

n + a) + (−1)n(x∗
0 + a) + 2

n−1∑
j=1

(−1)j(x∗
n−j + a)




+ (−1)nv0,x∗ . (2.32)

However, by the lemma, for n both odd and even, (2.32) implies

vn,x = vn,x∗ .

Similarly,

vn,y = vn,y∗ .

Thus, for all n = 0, 1, 2, 3, . . .

vn,x = vn,x∗ ,

vn,y = vn,y∗ .

Thus,

F ∗
n,x∗ = Fn,x = m

vn+1,x − vn,x

∆t
= m

vn+1,x∗ − vn,x∗

∆t
.

Similarly,

F ∗
n,y∗ = m

vn+1,y∗ − vn,y∗

∆t
,

and the theorem is proved. �
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Theorem 2.6. Under the rotation{
x∗ = x cos θ + y sin θ

y∗ = y cos θ − x sin θ
(2.33)

where θ is the smallest positive angle measured counterclockwise from the
X to the X∗ axis, Eqs. (2.20), (2.21) are covariant.

Proof. The proof follows along the same lines as that of Theorem 2.5
after one defines {

v0,x∗ = v0,x cos θ + v0,y sin θ

v0,y∗ = v0,y cos θ − v0,x sin θ
(2.34)

and notes that {
F ∗

n,x∗ = Fn,x cos θ + Fn,y sin θ

F ∗
n,y∗ = Fn,y cos θ − Fn,x sin θ

. (2.35)

�

Theorem 2.7. Under relative uniform motion of coordinate systems,
Eqs. (2.20), (2.21) are covariant.

Proof. Consider first motion in one dimension. Assume then that the X

and X∗ axes are in relative motion defined by

x∗
n = xn − ctn, n = 0, 1, 2, 3, . . . , (2.36)

in which c is a positive constant. If v0,x is the initial velocity of P along the
X axis, define v0,x∗ along the X∗ axis by

v0,x∗ = v0,x − c. (2.37)

Hence, for n = 1,

v1,x =
2

∆t

[
(x∗

1 + ct1) − (x∗
0 + ct0)

] − v0,x = v1,x∗ + c. (2.38)

For n > 1,

vn,x =
2

∆t


x∗

n + (−1)nx∗
0 + 2

n−1∑
j=1

(−1)jx∗
n−j


 + (−1)nv0,x

+
2c

∆t


tn + (−1)nt0 + 2

n−1∑
j=1

(−1)jtn−j


 .
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But, it follows readily that

tn + (−1)nt0 + 2
n−1∑
j=1

(−1)jtn−j =

{
0, n even

∆t, n odd
.

Thus, with the aid of the lemma, it follows that for both n odd and even,

vn,x = vn,x∗ + c.

Thus for all n = 0, 1, 2, 3, . . . ,

F ∗
n,x∗ = Fn,x = m

vn+1,x∗ + c − vn,x∗ − c

∆t
= m

vn+1,x∗ − vn,x∗

∆t
. (2.39)

Under the assumption that

y∗ = y − dtn

in which d is a constant, one finds similarly that

F ∗
n,y∗ = m

vn+1,y∗ − vn,y∗

∆t
, (2.40)

and the covariance is established. �

2.5. Perihelion Motion

In this section and in the next two sections, we show how to apply con-
servative methodology to problems in physics. As a first application, let us
examine a planar 3-body problem in which the force of interaction is grav-
itation. In such problems conservation of energy, linear momentum, and
angular momentum are basic.

Let P
i
, i = 1, 2, 3, be three bodies, with respective masses mi, in motion

in the XY plane, in which the force of interaction is gravitation. The force
�Fi,j between any two of the bodies will have magnitude Fi,j = G

mimj

r2
ij

, in

which G = (6.67)10−8, and rij is the distance between the bodies. For initial
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data, let us choose

m1 = (6.67)−1108 m2 = (6.67)−1106 m3 = (6.67)−1105

x1,0 = 0.0 x2,0 = 0.5 x3,0 = −1.0

y1,0 = 0.0 y2,0 = 0.0 y3,0 = 8.0

v1,0,x = 0.0 v2,0,x = 0.0 v3,0,x = 0.0

v1,0,y = 0.0 v2,0,y = 1.63 v3,0,y = −3.75.

The differential equations of motion for this system are

m1ẍ1 = −Gm1m2

r2
12

x1 − x2

r12
− Gm1m3

r2
13

x1 − x3

r13

m1ÿ1 = −Gm1m2

r2
12

y1 − y2

r12
− Gm1m3

r2
13

y1 − y3

r13

m2ẍ2 = −Gm1m2

r2
12

x2 − x1

r12
− Gm2m3

r2
23

x2 − x3

r23

m2ÿ2 = −Gm1m2

r2
12

y2 − y1

r12
− Gm2m3

r2
23

y2 − y3

r23

m3ẍ3 = −Gm1m3

r2
13

x3 − x1

r13
− Gm2m3

r2
23

x3 − x2

r23

m3ÿ3 = −Gm1m3

r2
13

y3 − y1

r13
− Gm2m3

r2
23

y3 − y2

r23
,

in which

r2
ij = (xi − xj)2 + (yi − yj)2.

For ∆t = 0.001, and i = 1, 2, 3; n = 0, 1, 2, . . . , we approximate the
solution of this system with the following form of the recursion formulas,
which is most convenient for Newtonian iteration, since the denominators
in the iteration formulas are all unity:

xi,n+1 − xi,n − 1
2
(∆t)(vi,n+1,x + vi,n,x) = 0

yi,n+1 − yi,n − 1
2
(∆t)(vi,n+1,y + vi,n,y) = 0

vi,n+1,x − vi,n,x − ∆t

mi
Fi,n,x = 0

vi,n+1,y − vi,n,y − ∆t

mi
Fi,n,y = 0,
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in which the F ’s are given by

F1,n,x = −Gm1m2[(x1,n+1 + x1,n) − (x2,n+1 + x2,n)]
r12,nr12,n+1[r12,n + r12,n+1]

− Gm1m3[(x1,n+1 + x1,n) − (x3,n+1 + x3,n)]
r13,nr13,n+1[r13,n + r13,n+1]

F1,n,y = −Gm1m2[(y1,n+1 + y1,n) − (y2,n+1 + y2,n)]
r12,nr12,n+1[r12,n + r12,n+1]

− Gm1m3[(y1,n+1 + y1,n) − (y3,n+1 + y3,n)]
r13,nr13,n+1[r13,n + r13,n+1]

F2,n,x = −Gm1m2[(x2,n+1 + x2,n) − (x1,n+1 + x1,n)]
r12,nr12,n+1[r12,n + r12,n+1]

− Gm2m3[(x2,n+1 + x2,n) − (x3,n+1 + x3,n)]
r23,nr23,n+1[r23,n + r23,n+1]

F2,n,y = −Gm1m2[(y2,n+1 + y2,n) − (y1,n+1 + y1,n)]
r12,nr12,n+1[r12,n + r12,n+1]

− Gm2m3[(y2,n+1 + y2,n) − (y3,n+1 + y3,n)]
r23,nr23,n+1[r23,n + r23,n+1]

F3,n,x = −Gm1m3[(x3,n+1 + x3,n) − (x1,n+1 + x1,n)]
r13,nr13,n+1[r13,n + r13,n+1]

− Gm2m3[(x3,n+1 + x3,n) − (x2,n+1 + x2,n)]
r23,nr23,n+1[r23,n + r23,n+1]

F3,n,y = −Gm1m3[(y3,n+1 + y3,n) − (y1,n+1 + y1,n)]
r13,nr13,n+1[r13,n + r13,n+1]

− Gm2m3[(y3,n+1 + y3,n) − (y2,n+1 + y2,n)]
r23,nr23,n+1[r23,n + r23,n+1]

,

and

r2
ij,m = (xi,m − xj,m)2 + (yi,m − yj,m)2; m = n, n + 1.

In the absence of P3, the motion of P2 relative to P1 is the periodic orbit
shown in Figure 2.1, for which the period is τ = 3.901. If the major axis of
motion is the line of greatest distance between any two points of an orbit,
and if the length of the major axis is defined to be 2a, the major axis of
P2’s motion relative to P1 lies on the X axis and a = 0.730.

The initial data for P3 were chosen so that this body begins its motion
relatively far from both P1 and P2, arrives in the vicinity of (−1, 0) almost
simultaneously with P2 and then proceeds past (−1, 0) at a relatively
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Figure 2.1. A periodic orbit.

Figure 2.2. Orbit deflection.

high speed, assuring only a short period of strong gravitational attraction.
Particles P2 and P3 come closest in the third quadrant at t2125, when P2

is at (−0.9296,−0.1108) and P3 is at (−0.9325,−0.1012). The effect of the
interaction is to deflect P2 outward, as is seen clearly in Figure 2.2, where
the motion of P2 relative to P1 has been plotted from t0 to t5000, with the
integer labels n = 0, 1, 2, 3, 4, 5, marking the positions t1000n. After hav-
ing been deflected, P2 goes into the new orbit about P1 which is shown in
Figure 2.3. The end points of the new major axis are (0.4943, 0.1664) and
(−0.9105,−0.3075), so that a = 0.74135. The new period is τ = 3.9905.

Now, the perihelion point is the position of P2 which is closest to P1

during the orbit. Since P2 has been deflected into a new orbit, its peri-
helion point has moved. The perihelion motion is measured by the angle
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Figure 2.3. Positive perihelion motion.

Figure 2.4. Negative perihelion motion.

of inclination θ of the new major axis with the X axis. and is given by
tan θ = 0.34. The perihelion motion of this example is positive.

If we now change the initial data of P3 to x3,0 = −0.5, y3,0 = 8.0,
v3,0,x = −0.25, v3,0,y = −4.00, then the strongest gravitational effect
between P2 and P3 occurs in the second quadrant at t1966 when P2 is at
(−0.94582, 0.01950) and P3 is at (−0.94418, 0.01796). P2 is then perturbed
into the new orbit shown in Figure 2.4. The end points of the new major
axis are (0.50724,−0.18349) and (−0.92692, 0.33474), so that a = 0.76246.

The new period is τ = 4.162. The resulting perihelion motion is now neg-
ative, since the angle θ of the new major axis with the X axis is given by
tan θ = −0.36.
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From the above and similar examples, it follows that the major axis of
P2 is deflected in the same direction as is P2. In actual planetary motions,
for example, in a Sun–Mercury–Venus system, where the mass of the sun
is distinctly dominant, it would appear that when Mercury and Venus are
relatively close in the first or third quadrants, the perihelion motion of
Mercury should be perturbed a small amount in the positive angular direc-
tion, while relative closeness in the second or fourth quadrants should result
in a small negative angular perturbation. All such possibilities can occur for
the motions of Mercury and Venus. Thus, the perihelion motion of Mercury
should be a complex, nonlinear, oscillatory motion. This conclusion was ver-
ified on the computer with ten full orbits of Mercury.

2.6. The Fundamental Problem of Electrostatics

The fundamental problem of electrostatics is a conservative problem which
is described as follows. Given m electric charges q1, q2, . . . , qm, called
the source charges, and n electric charges Q1, Q2, . . . , Qn, called the test
charges, calculate the trajectories of Q1, Q2, . . . , Qn from given initial data
if the positions of the source charges are fixed (Griffiths (1981)). The funda-
mental problem is a discrete problem and has all the inherent difficulties of
an n-body problem when n ≥ 3. The classical way to avoid these difficulties
is to consider special classes of problems in which the source charges are
distributed continuously, thus allowing the introduction of integrals, fields,
Gauss’s law, Laplace’s equation, and Poisson’s equation. In this section we
will show how to solve the fundamental problem when m and n are finite.
We will use Coulomb’s law in the following way. If two particles P1, P2 have
respective charges e1, e2, then a potential φ defined by them is taken to be
e1e2/r12, in which r12 is the distance between them.

For convenience we now let the test charges be Q1, Q2, . . . , Qn and let
the source charges be qn+1, qn+2, . . . , qN , in which N = n + m. Then the
motion of the test charges is determined by (2.4), (2.5).

As an example let us consider the following. Let Q1, Q2, Q3 be electrons
and let q1 be a positron which is fixed at the origin (0, 0, 0) of xyz space. The
mass of each particle is (9.1085)10−28 g. The charge of each of Q1, Q2, Q3 is
−(4.8028)10−10 esu, while the charge of q1 is (4.8028)10−10 esu. The trans-
formations

R = (X,Y, Z) = 1012(x, y, z) = 1012r (2.41)

T = 1022t (2.42)
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Figure 2.5. Initial data.

Figure 2.6. Motion of Q1.

are introduced for the actual calculations. In the XY Z variables, the
initial positions of Q1, Q2, Q3 are taken to be (1, 0, 0), (0, 1, 0), (0, 0, 1),
respectively. The initial velocities of Q1, Q2, Q3 are taken to be
(0, 1, 0), (0, 0, 1), (1, 0, 0), respectively. These initial data are shown in
Figure 2.5. The initial energy is −(6.606)10−8 erg. Finally, let ∆T =
0.00001.

Figures 2.6–2.8 show the complex motions of Q1, Q2, Q3, respectively,
every 5000 time steps over 5000000 time steps. The trajectories are complex
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Figure 2.7. Motion of Q2.

Figure 2.8. Motion of Q3.

three dimensional motions, which are not available analytically. In all cases,
one finds that |Xi| < 3, |Yi| < 3, |Zi| < 3, i = 1, 2, 3 and that each X,Y, Z

takes on both positive and negative values. The three electrons are usu-
ally well separated, as is shown typically in Table 2.1, while the system
is held together by the single positron at the origin. The entries in the



April 7, 2004 16:38 spi-b176: N-Body Problem & Models chap02

32 N-Body Problems and Models

Table 2.1. Positions of Q1, Q2, Q3.

T Q X Y Z

1000000 Q1 −0.7091 2.4993 0.6711
Q2 0.6711 −0.7091 2.4993
Q3 2.4993 0.6711 −0.7091

2000000 Q1 1.2035 −0.9622 −0.2833
Q2 −0.2833 1.2035 −0.9622
Q3 −0.9622 −0.2833 1.2035

3000000 Q1 1.6067 1.3750 −0.9647
Q2 −0.9647 1.6067 1.3750
Q3 1.3750 −0.9647 1.6067

4000000 Q1 −0.4644 −1.7039 1.4298
Q2 1.4297 −0.4644 −1.7039
Q3 −1.7039 1.4296 −0.4644

5000000 Q1 1.5599 −0.2895 0.4383
Q2 0.4354 1.5472 −0.2751
Q3 −0.2727 0.4340 1.5471

table indicate that, to four decimal places, there may be some symmetry in
the three trajectories due to the special initial conditions of the problem.
However, this is revealed to be false at the times T = 4000000, 5000000.
Thereafter, the system becomes physically unstable as Q2 begins to oscil-
late around the positron, thus negating the effect of the positron on Q1 and
Q3. Replacement of the positron by a fixed positive charge three times that
of the positron yields a physically stable system with electron trajectories
as complex as those shown in Figures 2.6–2.8.

2.7. The Calogero Hamiltonian System

Thus far we have emphasized a Newtonian formulation of the N -body prob-
lem. However, a more general formulation would use Hamiltonians. In this
section we will discuss a Calogero Hamiltonian system and in the next we
will discuss a Toda Hamiltonian system.

A Calogero Hamiltonian system (Calogero (1975), Marsden (1981)) is a
system of N particles on a line with Hamiltonian

H =
1
2

N∑
i=1

p2
i +

N∑
i �=j

i,j=1

1
(qi − qj)2

. (2.43)
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For (2.43),

N∑
i=1

pi (2.44)

is a system invariant.
We will show how to reformulate particle interactions characterized by

(2.43) by means of difference equations so that (2.43) and (2.44) continue
to remain system invariants.

For clarity and intuition, let us begin with a two-particle Calogero
system whose Hamiltonian is

H =
1
2

2∑
i=1

p2
i +

2
(q1 − q2)2

, q1 �= q2. (2.45)

Let ∆t > 0, and tk = k∆t, k = 0, 1, 2, . . . . Denote p1, p2, q1, q2 at time tk
by p1,k, p2,k, q1,k, q2,k, respectively. For i = 1, 2 and k = 0, 1, 2, . . . , define

pi,k+1 + pi,k

2
=

qi,k+1 − qi,k

∆t
(2.46)

pi,k+1 − pi,k

∆t
= Fi,k, (2.47)

where

F1,k = 2
q1,k+1 + q1,k − q2,k+1 − q2,k

(q1,k − q2,k)2(q1,k+1 − q2,k+1)2
, q1,k �= q2,k, k = 0, 1, 2, . . . ,

(2.48)

F2,k = −F1,k. (2.49)

Theorem 2.8. Given p1,0, p2,0, q1,0, q2,0, then (2.47)–(2.49) imply the
invariance of p1,k + p2,k, that is,

p1,k + p2,k ≡ p1,0 + p2,0, k = 0, 1, 2, . . . . (2.50)

Proof. From (2.47)–(2.49)

p1,k+1 = p1,k + (∆t)F1,k,

p2,k+1 = p2,k − (∆t)F1,k.

Hence, for k = 0, 1, 2, . . . ,

p1,k+1 + p2,k+1 = p1,k + p2,k,

which implies (2.50). �
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Theorem 2.9. Difference formulas (2.46)–(2.49) imply the invariance of
Hamiltonian (2.45) for given p1,0, p2,0, q1,0, q2,0, that is, for k = 0, 1, 2, . . . ,

1
2
(
p2
1,k + p2

2,k

)
+

1
(q1,k − q2,k)2

≡ 1
2
(
p2
1,0 + p2

2,0
)

+
2

(q1,0 − q2,0)2
. (2.51)

Proof. Let

Wn =
n−1∑
k=0

[
(q1,k+1 − q1,k)F1,k + (q2,k+1 − q2,k)F2,k

]
. (2.52)

Then, from (2.46) and (2.47),

Wn =
n−1∑
k=0

[
(q1,k+1 − q1,k)

p1,k+1 − p1,k

∆t
+ (q2,k+1 − q2,k)

p2,k+1 − p2,k

∆t

]

=
n−1∑
k=0

[
q1,k+1 − q1,k

∆t
(p1,k+1 − p1,k) +

q2,k+1 − q2,k

∆t
(p2,k+1 − p2,k)

]

=
1
2

n−1∑
k=0

[
(p2

1,k+1 − p2
1,k) + (p2

2,k+1 − p2
2,k)

]

so that

Wn =
1
2
(
p2
1,n + p2

2,n

) − 1
2
(
p2
1,0 − p2

2,0
)
. (2.53)

However, Eqs. (2.48), (2.49), and (2.52) imply

Wn = 2
n−1∑
k=0

[
(q1,k+1 − q1,k)

q1,k+1 + q1,k − q2,k+1 − q2,k

(q1,k − q2,k)2(q1,k+1 − q2,k+1)2

− (q2,k+1 − q2,k)
q1,k+1 + q1,k − q2,k+1 − q2,k

(q1,k − q2,k)2(q1,k+1 − q2,k+1)2

]

= 2
n−1∑
k=0

(q1,k+1 − q2,k+1)2 − (q1,k − q2,k)2

(q1,k − q2,k)2(q1,k+1 − q2,k+1)2

= 2
n−1∑
k=0

[
1

(q1,k − q2,k)2
− 1

(q1,k+1 − q2,k+1)2

]
,

so that

Wn =
2

(q1,0 − q2,0)2
− 2

(q1,n − q2,n)2
. (2.54)
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Elimination of Wn between (2.53) and (2.54) then yields (2.51) and the
theorem is proved.

The extension to systems of N particles then follows directly from for-
mulation (2.46)–(2.49), but with i = 1, 2, . . . , N .

To implement the formulation practically, consider system (2.46)–(2.49)
with the initial data p1,0 = 1, p2,0 = −1, q1,0 = 1, q2,0 = −1. Then the
Newtonian iteration formulas for solving the system at tk+1 in terms of
data at tk are

q
(n+1)
1,k+1 = q1,k + ∆t

[
p
(n)
1,k+1 + p1,k

2

]
(2.55)

q
(n+1)
2,k+1 = q2,k + ∆t

[
p
(n)
2,k+1 + p2,k

2

]
(2.56)

p
(n+1)
1,k+1 = p1,k + 2∆t

[
q
(n+1)
1,k+1 + q1,k − q

(n+1)
2,k+1 − q2,k

(q1,k − q2,k)2
(
q
(n+1)
1,k+1 − q

(n+1)
2,k+1

)2

]
(2.57)

p
(n+1)
2,k+1 = p2,k − 2∆t

[
q
(n+1)
1,k+1 + q1,k − q

(n+1)
2,k+1 − q2,k

(q1,k − q2,k)2
(
q
(n+1)
1,k+1 − q

(n+1)
2,k+1

)2

]
. (2.58)

Calculation for 500000 steps with ∆t = 0.0001 yields the typical results
shown in Table 2.2 every 50000 time steps. The table shows clearly that
both the Hamiltonian and p1 + p2 are conserved. In addition, it shows an
increasingly repulsive effect which the particles exert on each other. �

Table 2.2. Calogero.

k H q1 q2 p1 p2

1 1.5 1.000000 −1.000000 1.000000 −1.000000
50000 1.5 6.964067 −6.964067 1.220529 −1.220529

100000 1.5 13.076572 −13.076572 1.223551 −1.223551
150000 1.5 19.196231 −19.196231 1.224191 −1.224191
200000 1.5 25.317857 −25.317857 1.224427 −1.224427
250000 1.5 31.440301 −31.440301 1.224539 −1.224539
300000 1.5 37.563163 −37.563163 1.224601 −1.224601
350000 1.5 43.686267 −43.686267 1.224638 −1.224638
400000 1.5 49.809524 −49.809524 1.224663 −1.224663
450000 1.5 55.932884 −55.932884 1.224680 −1.224680
500000 1.5 62.056317 −62.056317 1.224692 −1.224692
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2.8. The Toda Hamiltonian System

A Toda Hamiltonian system (Toda (1967)) is a system of N particles on a
line with Hamiltonian

H =
1
2

N∑
i=1

p2
i +

N−1∑
i=1

exp(qi − qi+1). (2.59)

We will show how to reformulate particle interactions characterized by
(2.59) by means of difference equations so that (2.44) and (2.59) remain
system invariants. Formulas (2.46)–(2.49), for N = 2, need be modified only
slightly, that is, (2.48) needs to be changed, and this is done as follows:

F1,k=

{
− exp(q1,k+1−q2,k+1)−exp(q1,k−q2,k)

(q1,k+1−q2,k+1)−(q1,k−q2,k)
; (q1,k+1 − q1,k) − (q2,k+1 − q2,k) �= 0

− exp(q1,k − q2,k); (q1,k+1 − q1,k) − (q2,k+1 − q2,k) = 0.
(2.60)

Theorem 2.10. Given p1,0, p2,0, q1,0, q2,0, then Eqs. (2.46), (2.47), (2.49),
(2.60) imply

p1,k + p2,k ≡ p1,0 + p2,0, k = 0, 1, 2, . . . . (2.61)

Proof. The proof is essentially identical to that of Theorem 2.8. �

Theorem 2.11. Under the assumptions of Theorem 2.10, it follows for
k = 0, 1, 2, . . . , that

1
2
(
p2
1,k +p2

2,k

)
+exp(q1,k −q2,k) ≡ 1

2
(
p2
1,0+p2

2,0
)
+exp(q1,0−q2,0). (2.62)

Proof. Consider first the case (q1,k+1 − q1,k)− (q2,k+1 − q2,k) �= 0. Recall
also Eq. (2.52), that is,

Wn =
n−1∑
k=0

[
(q1,k+1 − q1,k)F1,k + (q2,k+1 − q2,k)F2,k

]
.

Thus, Eq. (2.53), that is

Wn =
1
2
(
p2
1,n + p2

2,n

) − 1
2
(
p2
1,0 − p2

2,0
)

is again valid, using the same argument as used to derive (2.53).
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Next, Eqs. (2.46), (2.47), (2.49), (2.52) and (2.60) imply

Wn =
n−1∑
k=0

{
(q1,k+1 − q1,k)

[
−exp(q1,k+1 − q2,k+1) − exp(q1,k − q2,k)

(q1,k+1 − q2,k+1) − (q1,k − q2,k)

]

+ (q2,k+1 − q2,k)
[
exp(q1,k+1 − q2,k+1) − exp(q1,k − q2,k)

(q1,k+1 − q2,k+1) − (q1,k − q2,k)

]}

=
n−1∑
k=0

{−[exp(q1,k+1 − q2,k+1) − exp(q1,k − q2,k)]},

so that

Wn = exp(q1,0 − q2,0) − exp(q1,n − q2,n). (2.63)

Finally, elimination of Wn between Eqs. (2.53) and (2.63) yields (2.62).
In the second case, when (q1,k+1 − q1,k) − (q2,k+1 − q2,k) = 0, the corre-

sponding summation term in (2.52) becomes simply

[(q1,k+1 − q1,k) − (q2,k+1 − q2,k)][− exp(q1,k − q2,k)]

which is zero, and the theorem continues to be valid. �

Practical implementation uses formulas entirely analogous to
(2.55)–(2.58), but which incorporate (2.60) for the Toda lattice. Calculation
for 240000 steps with ∆t = 0.000001 with initial data q1,0 = 1, q2,0 = −1,
p1,0 = 10, p2,0 = −10 yields the results in Table 2.3. The second part of
(2.60) is essential numerically at the turning point, which occurs between

Table 2.3. Toda.

k H q1 q2 p1 p2

1 107.39 1.000000 −1.000000 10.000000 −10.000000
20000 107.39 1.198295 −1.198295 9.818524 −9.818524
40000 107.39 1.392152 −1.392152 9.549895 −9.549895
60000 107.39 1.579463 −1.579463 9.156625 −9.156625
80000 107.39 1.757265 −1.757265 8.590050 −8.590050

100000 107.39 1.921525 −1.921525 7.792399 −7.792399
120000 107.39 2.067027 −2.067027 6.7051120 −6.7051120
140000 107.39 2.187513 −2.187513 5.286525 −5.286525
160000 107.39 2.276273 −2.276273 3.537755 −3.537755
180000 107.39 2.327260 −2.327260 1.526700 −1.526700
200000 107.39 2.336502 −2.336502 −0.609200 0.609200
220000 107.39 2.303235 −2.303235 −2.694399 2.694399
240000 107.39 2.230142 −2.230142 −4.569209 4.569209
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k = 180000 and k = 200000. The table indicates clearly the invariance of
both H and p1 + p2.

2.9. Remarks

In applying Newton’s iteration formulas to the resulting algebraic or tran-
scendental system of the method of Section 2.2, it is convenient to know how
many solutions the system has. We now give an example to show that the
solution need not be unique, and indeed has two solutions. Each problem
one considers will require a related analysis.

Consider the initial value problem

ẍ = x2, x(0) = 1, ẋ = 1. (2.64)

Choosing φ(x) = − 1
3x3, the system to be solved is

xk+1 = xk +
1
2
(∆t)(vk+1 + vk) (2.65)

vk+1 = vk +
1
3
(∆t)

(
x2

k+1 + xk+1xk + x2
k

)
. (2.66)

Substitution of (2.66) into (2.65) yields

x2
k+1 +

(
1 − 6

(∆t)2

)
xk+1 +

(
1 +

6
(∆t)2

+
6

(∆t)

)
= 0. (2.67)

Since the initial conditions are given in (2.38), it follows from (2.67) that

x2
1 +

(
1 − 6

(∆t)2

)
x1 +

(
1 +

6
(∆t)2

+
6

(∆t)

)
= 0. (2.68)

However, examination of the discriminant of (2.68) reveals that for ∆t <

0.79490525, Eq. (2.68) has two real roots. Indeed, one must choose the
negative sign in the quadratic formula to get the correct root. For ∆t = 0.01,

the correct physical approximation is x1 = 1.01005, while the incorrect
solution is x1 = 59998.

Note also that if in (2.5) one would find that any rlm,n+1 = rlm,n, then
φ(rlm,n+1) = φ(rlm,n). In this case, the corresponding term in (2.6) need



April 7, 2004 16:38 spi-b176: N-Body Problem & Models chap02

N-Body Problems with 2 ≤ N ≤ 100 39

only be replaced by

−(rlm,n+1 − rlm,n)
∂φ

∂r

∣∣∣∣
r=rlm,n

and the theorem will continue to be valid.
Note finally that conservative methodology will be applied again in

Chapter 8.
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