Chapter 2

N-Body Problems with 2 < [N < 100

2.1. Introduction

In general, we will wish to consider N-body problems in which N may be
relatively large and relatively small. N-body problems with 2 < N < 100
will be considered to be small and we will begin with these. For N = 2, and
under important restrictions, it may be possible to solve related problems
in closed form. This is the case, for example, in astromechanics (van de
Kamp (1964)). Inclusion of various important constraints, however, then
demands numerical methodology.

Now, if IV is small, we would like to do a very good job in solving the
N-body problem. By this we mean that we would like not only to solve
the problem with accuracy, but we would also like to preserve numerically
any basic physical invariants of the system. To do this in detail, we con-
centrate theoretically and computationally on the 3-body problem, because
it contains all the difficulties of the general N-body problem. The entire
discussion extends in a natural way to the general N-body problem, and,
in particular, to the more simplistic 2-body problem.

For ¢ = 1,2,3, let P; of mass m; be at 7 = (x4, i, 2;) at time ¢. Let
the positive distance between P; and P}, i # j, be r;; = rj;. Let ¢ = ¢4 =
&(rij), given in ergs, be a potential for the pair P;, P;. Then the force on
P; due to P; is

P

i = )

(97’@‘ Tij
and in this section we assume Newtonian dynamical differential equations
for the 3-body problem, and these are

P 00 T—7 00—

= — — ,=1,2,3 2.1
¢ dt2 8rij Tij 8rik Tik ’ ! B ( )
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16 N-Body Problems and Models

where 7 = 1 implies j = 2,k = 3; i = 2 implies j = 1,k = 3; ¢« = 3 implies
j=1k=2.
The following summary theorem incorporates several well known results.

Theorem 2.1. (Goldstein (1980)) System (2.1) conserves energy, linear
momentum, and angular momentum. It is also covariant under translation,
rotation, and uniform relative motion of coordinate frames.

2.2. Numerical Methodology

In general, (2.1) will be nonlinear and will require numerical methodology.
In order to solve an initial value problem for (2.1) numerically, we first
rewrite it as the equivalent first order system

dri _

=T 1=123 (2.2)
m W0 00Tl 00 TimTk g3 (2.3)
dt (’9rij rij 8rik Tik

Our numerical formulation now proceeds as follows. For At > 0, let t,, =
n(At),n =0,1,2,.... At time ¢, let P; be at 7, = (T4 Yin, zi,n) With
velocity ¥; n, = (Vi z,ns Viyns Vizn). Denote the distances | PPy, || PiPsl,
|P2Ps|| by m2,n, T13.n, T23,n, respectively. Differential equations (2.2) and
(2.3) are now approximated, respectively, by the difference equations

Fi,n-&—l - Fi,n _ Ui,n—i—l + 77i,n (24)
At 2
.y 77i,n+1 - 77i,n _ _¢(Tij,n+1) - ¢(rij,n) Fi,n+1 + Fi,n - Fj,nJrl - F]n
' At Tijn+1 = Tijn Tijnt1 + Tijn
N d)(rik,nJrl) - ¢(rik,n) 'F;,n+1 + Fi,n - Fk,n+1 - Fk,n
Tikn+1 — Tik,n Tikn+1 T Tik,n
(2.5)

Note that the force is approximated, not the potential. We take the very
same potential as in continuum mechanics, the significance of which will be
seen shortly. Consistency follows immediately as At — 0. Also note that, for
the present, we assume in (2.5) that 7y, pt1 7 Tim,n, for any choices of [, m.

System (2.4), (2.5) consists of 18 implicit equations for the unknowns
Tin+1> Yintls Zin+1s Vizntl Viyntls Viznt1 10 the 18 knowns ; n, ¥in,
Zims Vizm, Viymn, Vizn and is solvable readily by Newton’s method, as
described in Appendix II.
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2.3. Conservation Laws

Because of its physical significance, let us show now that the numerical
solution generated by (2.4) and (2.5) conserves the same energy, linear
momentum, and angular momentum as does (2.1).

Consider first energy conservation. Define

N-1( 3
Wy = Z { My (Tint1 — Tin) - (Vg1 — ﬁi,n)/At} . (2.6)
n=0 \li=1

Note immediately relative to (2.6) that, since we are considering specif-
ically the three-body problem, the symbol N in summation (2.6) is, in this
section only, a numerical time index. Then insertion of (2.4) into (2.6) and

simplification yields

1 1 1
Wy = 57711(11171\1)2 + §m2('U2,N)2 + §m3(v371\1)2
1
- §m1(v1,0)2 - §m2(v2,0)2 - §m3(v370)2,
so that
Wy = Ky — Ko. (2.7)

Insertion of (2.5) into (2.6) implies, with some tedious algebraic
manipulation,
N-1
Wn = Z (—012,n41 — P13,041 — D23 .n41 + P12,n + P13,0 + P23.n)
n=0

so that
Wn = —¢n + do. (2.8)

Elimination of Wy between (2.7) and (2.8) then yields conservation of
energy, that is,

Ky +¢n=Ko+¢g, N=1,23,....

Moreover, since Ky and ¢y depend only on initial data, it follows that
Ky and ¢ are the same in both the continuous and the discrete cases, so
that the energy conserved by the numerical method is exactly that of the
continuous system. Note, in addition, that the proof is independent of At.
Thus, we have proved the following theorem.
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Theorem 2.2. Independently of At, the numerical method of Section 2.2
is energy conserving, that is,
Kny+o¢n=Ko+¢o, N=1,2,3,....

To show the conservation of linear momentum, we proceed as follows.
The linear momentum M;(t,,) = M, ,, of P; at ¢, is defined to be the vector

—

Mi,n = mi(vi,n,xaUi,n,yavi,n,z)- (29)

The linear momentum M, of the three-body system at time ¢,, is defined
to be the vector

3

Now, from (2.5),
M1 (T, 041 — Tin) + Mo (Ta,ni1 — T2n) + ma (T 011 — U3,n) = 0.
Thus, forn =0,1,2,...,

mi (Ul,n—i-l,x - Ul,n,;c) + m2(v2,n+1,x - U2,n,x) + m3(v3,n+1,a¢ - U3,n,:c) =0.

2.11
Summing both sides of (2.11) from n = 0 to n = N — 1 implies 2
M1V, N,z + MavV2 No +M3V3 Nz =C1, N 2>1 (2.12)

in which
M1V1,0,2 + MaV2,0z + M3V3,0, = C1. (2.13)

Similarly,
M1V1,N,y + MaV2 Ny + M3v3 N,y = Co (2.14)
M1V1,N,> + Mav2 N,» + M3vs N, = C3 (2.15)

in which
M1V1,0,y + Mav20,y + M3v30,y = Co (2.16)
mMiV1,0,2 + Mav20 > + M3v30,, = Cs. (2.17)

Thus,

3
M, = M, =(C1,C5,C5) =My, n=123, ...,
=1
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which is the classical law of conservation of linear momentum. Note that
My depends only on the initial data. Thus we have the following theorem.

Theorem 2.3. Independently of At, the numerical method of Section 2.2
conserves linear momentum, that is,

M, =DM, n=123,....

To show the conservation of angular momentum, we proceed as follows.
The angular momentum L; ,, of P; at ¢, is defined to be the cross product
vector

Ei,n = mz(’r_‘;,n X ﬁz,n) (218)

The angular momentum of a three-body system at t,, is defined to be the
vector

3
Ln=Y L (2.19)
i=1
It then follows readily that

—

Li,nJrl - Li,n

= mi(ﬁ,n—&-l + 'Fi,n) X (ﬁi,n—&-l - ﬁz,n)

=m; ('Fi,n—&-l - Fz,n) X 5(6i,n+1 + gi,n)

1 . . - -
+§(Ti,n+1 + 7in) X (Timg1 — Tin)

s . s s 1. s .
=my; | (Fint1 — Fin) X — (Fint1 — Tin) + = (Fint1 + Fin) X @ nAL

L At 2
1 . . .
= §(At)(7‘i,n+1 + ri,n) X Fi,n-
For notational simplicity, set
- 1 . . _
T‘i,n = 5( i,n+1 + ri,n) X Fi,n«

It follows readily, with some algebraic manipulation, that

—

Ty =Tom+ Tom+Tsp = 0.

Thus, one finds

=

Lyii—L,=0 n=0,1,23,...,
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so that
L.=Ly, n=123,...,

which implies, independently of At, the conservation of angular momentum.
Note again that Lo depends only on the initial data. Thus the following
theorem has been proved.

Theorem 2.4. Independently of At, the numerical method of Section 2.2
conserves angular momentum, that is

2.4. Covariance

We begin the discussion of Newtonian covariance by stating the basic
concepts. When a dynamical equation is structurally invariant under
a transformation, the equation is said to be covariant or symmetric. The
transformations we will consider are the basic ones, namely, translation,
rotation, and uniform relative motion. We will concentrate on two dimen-
sional systems, because the related techniques and results extend directly
to three dimensions. A general Newtonian force will be considered. Finally,
we will concentrate on the motion of a single particle P of mass m, with
extension to the N-body problem following in a natural way. And though
the assumptions just made may seem to be excessive, it will be seen
shortly that they render the required mathematical methodology readily
transparent.

Suppose now that a particle P of mass m is in motion in the XY
plane and that for At > 0 its motion from given initial data is determined
by a force ﬁ(tn) =F, = (Fnz, Fny) and by the dynamical difference
equations

Frnz=mnt1,0 — Unw)/(AF) (2.20)
Fry =m(Unt1,y — Uny)/(AL). (2.21)

The fundamental problem that we now consider is as follows. Let
z = fi(z*,y*),y = fo(x*,y*) be a change of coordinates. Under this trans-
formation, let Fy, » = F}y o, Fry = F*y Then we will want to prove that

n,r*» n
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in the X*Y™* system the dynamical equations of motion are
Ey o = m(Uni100 — Vo) /(AL) (2.22)
F;:,y* = m(Vnt1,y* — Vny)/(AL), 2.23)
which will establish covariance.
In consistency with (2.4), we assume that
Tn+1 — Tn Un+1,z + Un,z x;kLJrl - x;kl anrl,a:* + Un,;v*
= : : = 2.24
At 2 ' At 2 (224)
Yn4+1 — Yn Un+l,y + Uny y;;-i-l - y;kz Un+41,y* + Un,y*
_ Un41, _ . (2.25
At 2 ’ At 2 (2.25)
Relative to (2.24) and (2.25), the following lemma will be of value.
Lemma 2.1. Equations (2.24) and (2.25) imply
2 2
Ve = 27 (81 = 0) = Voai vies = (01 = 25) — Vo (2.26)
2 2 ., N
Uiy = E(yl —Y0) —Voy; Viyr = AL (W1 = %o) — voy- (2:27)
9 I n—1 i
Una = &7 [0+ (=1) 20 +2 Z;(—Wxn—j + (=102, n=>2
i=
(2.28)
2 I n—1 i
Un e = 17 [T+ (<) + 2 Zl(—l)ﬂx;;,j + (=D g, n>2
j: -
(2.29)
9 I n—1 i
Uny = 7y |Yn +(—=1)"yo + 2 Z(—l)ﬂyn,j +(—1)"vpy, n>2
i=1 |
(2.30)
2 I n—1 i
Unye = 27 [Un (D" 2 (D |+ (1) vy, n22
j=1 |
(2.31)

Proof.

Equations (2.26) follow directly from (2.24) with n = 0. Equa-

tions (2.27) follow directly from (2.25) with n = 0. Equations (2.28)—(2.31)

follow readily by mathematical induction.

O
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Theorem 2.5. FEquations (2.20) and (2.21) are covariant relative to the
translation

*

™ =x—a, y" =y—>b; a,b constants.
Proof. Define vy, = vg 4+, Vo,y = Vo,y+. Then, from (2.26) in Lemma 2.1,
— i * _ * _ —
Vig = [(a:l +a)— (= + a)] Vo,g* = V1 g+
At
Similarly,

U1,y = Uiy~
For n > 1, (2.28) and (2.29) in Lemma 2.1 yield

n—1

U = Ait (@ + @) + (=) (25 +a) +2 3 (=1 (2, + )
j=1
+ (=1)"vg - (2.32)

However, by the lemma, for n both odd and even, (2.32) implies
Ung = Ung=-

Similarly,
Uny = Un,y=-

Thus, for alln =0,1,2,3,...

Un,z = Un,z~,

Un,y = Un,y*-

Thus,
* - F _ Un+1,2 — Un,x _ Un41,z* — Un,z*
na* — I'nag = m =m .
At At
Similarly,
* o Un+1,y* — Un,y*
Yt At ’

and the theorem is proved. O
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Theorem 2.6. Under the rotation

{l’* =z cosf + ysinfb (2.33)

y* =ycosf — xsinf

where 0 is the smallest positive angle measured counterclockwise from the
X to the X* awis, Eqs. (2.20),(2.21) are covariant.

Proof. The proof follows along the same lines as that of Theorem 2.5
after one defines

Vo.z* = Vp.z COS 0O + vg ,, sin @
0,z 0,z 0,y : (234)
V0,y* = 0,y €08 0 — g 5 sin O
and notes that
{Fm = F,.cos0+F,, s.in 0 (2.35)
Fy o = Fy ycos 0 — F, zsind 0

Theorem 2.7. Under relative uniform motion of coordinate systems,
Eqgs. (2.20), (2.21) are covariant.

Proof. Consider first motion in one dimension. Assume then that the X
and X™* axes are in relative motion defined by

=z, —ct,, n=0,1,2,3,..., (2.36)

n

in which ¢ is a positive constant. If vy . is the initial velocity of P along the
X axis, define vg .+ along the X™* axis by

Vo, = Vo, — C- (2.37)
Hence, for n =1,
Vg = A% [(2] + ct1) — (x§ + cto)] — voz = V1,0 +c. (2.38)
Forn > 1,
9 n—1
Une = 2z 4 @+ (1) + 2;(—1)%;,J + (=1) "0
2c ! .
X |t (Do +2 ;(—wtw .
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But, it follows readily that

n—1
. 0 n even
ty + (=1)"tg + 2 1)ty =14 )

(1t +2 3 (1P {At’ o

Thus, with the aid of the lemma, it follows that for both n odd and even,
Un,z = Ung* + C.

Thus for all n =0,1,2,3,...,

Un+41,z* +c— Up,ax —C Un41,z* — Un,z*
Fropo=Foe=m A7 =m Az . (2.39)

Under the assumption that

y*:y_dtn

in which d is a constant, one finds similarly that

v R -
Fy e = m—ml (2.40)
and the covariance is established. O

2.5. Perihelion Motion

In this section and in the next two sections, we show how to apply con-
servative methodology to problems in physics. As a first application, let us
examine a planar 3-body problem in which the force of interaction is grav-
itation. In such problems conservation of energy, linear momentum, and
angular momentum are basic.

Let P,,7 =1,2,3, be three bodies, with respective masses m;, in motion
in the XY plane, in which the force of interaction is gravitation. The force
F;,j between any two of the bodies will have magnitude F; ; = G™5™, in

ij

which G = (6.67)1078, and r;; is the distance between the bodies. For initial
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data, let us choose

my = (6.67)7110%  mg = (6.67)7110°  ms3 = (6.67)7110°

z1,0 = 0.0 20 = 0.5 x3,0 = —1.0

y1,0 = 0.0 y2,0 = 0.0 y3,0 = 8.0
v1,0,2 = 0.0 V2,0, = 0.0 v3,0,0 = 0.0
v1,0,y = 0.0 V2,0,y = 1.63 v3,0,y = —3.75.

The differential equations of motion for this system are

Gm1m2 1 — T2 Gm1m3 1 — I3

mii; =

2 2
719 12 T13 713
i = _GMm2 Y1 — Y2 Gmams y1 —ys
W= 7’2 T T2 T
12 12 13 13
. Gmimg o —x1  Gmaoms x93 — 3
Ma%2 =" r 2 o:
12 12 23 23
L Gmimgys —y1  Gmams ys — ys
mayz = r? r r2 r
12 12 23 23
. Gmimszx3 —x1 Gmaoma 3 — T2
MaT3 =T r 2 r
13 13 23 23
. Gmimzys —y1r  Gmamszys — Y2
msys = — 2 - 2 )
i3 13 723 23

in which
ri = (zi —x5)% + (v — ;).

For At = 0.001, and ¢ = 1,2,3; n = 0,1,2,..., we approximate the
solution of this system with the following form of the recursion formulas,
which is most convenient for Newtonian iteration, since the denominators
in the iteration formulas are all unity:

1
Tin4+1 — Tin — §(At)(vi,n+1,£ + Ui,n,ac) =0

1
Yin+1l — Yin — E(At)(”i,nﬂ,y + Viny) =0
At

Vin+1l,x2 — Vin,ax — m_Fi,n,w =0

?

At

Vintty ~ Vimy = = Finy =0,

(2
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in which the F’s are given by

~ Gmama[(T1,n41 + T1n) — (T2,n41 + T2.0)]

Fine = 7120712041 (7120 + 712,041
B Gmims[(T1,n41 + T1n) — (L3041 + T3.0)]
T13,0T13,n+1(713,n + T13,n+1)
Finy = ~ Gmima[(y1,n41 + Y1,0) — (Y2041 + Y2,0)]
Y T12,nT12,n4+1 7120 + 712,041
~ Gmams[(y1,n41 + Y1,0) — (Y3041 + Y3,0))]
T13.nT13,n+1["13,n + T13,n+1)
Py, .= _Gm1m2[(l‘2,n+1 + o) — (T1.0+1 + T1.0)]
Y r12.nT12n+1["12.0 + T12,041)
_ Gmoms[(T2,nt1 + T2,n) — (T3 041 + T3.0)]
93,0723 n+1(723,n + T23,n+1)
Fony = ~ Gmama[(y2,n+1 + Y2,0) — (Y1041 + Y1,0)]
o T12,nT12,n4+1[T12,0 + 712,041
_ Gmams[(y2,n+1 + y2,n) — (Y3041 + Y3,0)]
7930723 n+1(723,n + T23,n+1)
By, .= ~ Gmuimg[(z3,n41 + T30) — (T1n+1 + 1)
’ 13,013,041 [T13,n + 713,041
~ Gmams[(#3,n41 + T3,0) — (T2,n41 + T2,0)]
7930723 n+1(723,n + T23.n+1)
P Gmima[(Ys.nt1 +Y3n) = (Y1nt1 + Y1.0)]
3y = —

T13,n713,n4+1("18,n + T13,n+1)
_ Gmams((ys,n+1 + Ysm) — (Y2,n41 + Y2,n)]
T23,n723,n+1(723,n + T23,n+1]

)

and

5m = (Tim = Tjm)” + Wim — Yjm)®s m=n,n+1.

In the absence of Ps, the motion of P, relative to P is the periodic orbit
shown in Figure 2.1, for which the period is 7 = 3.901. If the major axis of
motion is the line of greatest distance between any two points of an orbit,
and if the length of the major axis is defined to be 2a, the major axis of
P,’s motion relative to P; lies on the X axis and a = 0.730.

The initial data for P; were chosen so that this body begins its motion
relatively far from both P, and Ps, arrives in the vicinity of (—1,0) almost
simultaneously with P, and then proceeds past (—1,0) at a relatively
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(0,0.75)

N

Figure 2.1. A periodic orbit.
5
1
ﬁ
k/

Figure 2.2. Orbit deflection.

D)
W%

high speed, assuring only a short period of strong gravitational attraction.
Particles P, and P3 come closest in the third quadrant at t5195, when P
is at (—0.9296, —0.1108) and Ps is at (—0.9325, —0.1012). The effect of the
interaction is to deflect P» outward, as is seen clearly in Figure 2.2, where
the motion of P; relative to P; has been plotted from tg to t5000, with the
integer labels n = 0,1,2,3,4,5, marking the positions t19gg,. After hav-
ing been deflected, P, goes into the new orbit about P; which is shown in
Figure 2.3. The end points of the new major axis are (0.4943, 0.1664) and
(—0.9105,—0.3075), so that a = 0.74135. The new period is 7 = 3.9905.
Now, the perihelion point is the position of P, which is closest to P;
during the orbit. Since P, has been deflected into a new orbit, its peri-
helion point has moved. The perihelion motion is measured by the angle
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o

Figure 2.3. Positive perihelion motion.

Y

Figure 2.4. Negative perihelion motion.

of inclination 6 of the new major axis with the X axis. and is given by
tan @ = 0.34. The perihelion motion of this example is positive.

If we now change the initial data of P3 to z39 = —0.5, y30 = 8.0,
V30,0 = —0.25, v39, = —4.00, then the strongest gravitational effect
between P, and P occurs in the second quadrant at t1966 when P is at
(—0.94582,0.01950) and Ps is at (—0.94418, 0.01796). P, is then perturbed
into the new orbit shown in Figure 2.4. The end points of the new major
axis are (0.50724, —0.18349) and (—0.92692,0.33474), so that a = 0.76246.
The new period is 7 = 4.162. The resulting perihelion motion is now neg-
ative, since the angle 6 of the new major axis with the X axis is given by
tan 6 = —0.36.
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From the above and similar examples, it follows that the major axis of
P; is deflected in the same direction as is P,. In actual planetary motions,
for example, in a Sun—Mercury—Venus system, where the mass of the sun
is distinctly dominant, it would appear that when Mercury and Venus are
relatively close in the first or third quadrants, the perihelion motion of
Mercury should be perturbed a small amount in the positive angular direc-
tion, while relative closeness in the second or fourth quadrants should result
in a small negative angular perturbation. All such possibilities can occur for
the motions of Mercury and Venus. Thus, the perihelion motion of Mercury
should be a complex, nonlinear, oscillatory motion. This conclusion was ver-
ified on the computer with ten full orbits of Mercury.

2.6. The Fundamental Problem of Electrostatics

The fundamental problem of electrostatics is a conservative problem which
is described as follows. Given m electric charges ¢i,q2,...,qm, called
the source charges, and n electric charges Q1,Qo,...,Q,, called the test
charges, calculate the trajectories of @Q1,Q2, ..., Q, from given initial data
if the positions of the source charges are fixed (Griffiths (1981)). The funda-
mental problem is a discrete problem and has all the inherent difficulties of
an n-body problem when n > 3. The classical way to avoid these difficulties
is to consider special classes of problems in which the source charges are
distributed continuously, thus allowing the introduction of integrals, fields,
Gauss’s law, Laplace’s equation, and Poisson’s equation. In this section we
will show how to solve the fundamental problem when m and n are finite.
We will use Coulomb’s law in the following way. If two particles P, P, have
respective charges eq, es, then a potential ¢ defined by them is taken to be
e1ea/r12, in which 719 is the distance between them.

For convenience we now let the test charges be Q1,Qo,...,Q, and let
the source charges be ¢n41,qn+2,--.,qn, in which N = n + m. Then the
motion of the test charges is determined by (2.4), (2.5).

As an example let us consider the following. Let Q1, Q2, @3 be electrons
and let ¢1 be a positron which is fixed at the origin (0,0, 0) of zyz space. The
mass of each particle is (9.1085)1072% g. The charge of each of Q1, Q2, Q3 is
—(4.8028)10719 esu, while the charge of ¢; is (4.8028)1071% esu. The trans-
formations

R=(X,Y,Z) = 10"%(z,y,2) = 10**r (2.41)
T =10%%t (2.42)
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Q - Q

Q

Figure 2.5. [Initial data.

Figure 2.6. Motion of Q.

are introduced for the actual calculations. In the XY Z variables, the
initial positions of @Q1,Q2, Qs are taken to be (1,0,0),(0,1,0),(0,0,1),
respectively. The initial velocities of @Q1,Q2,Q3 are taken to be
(0,1,0),(0,0,1),(1,0,0), respectively. These initial data are shown in
Figure 2.5. The initial energy is —(6.606)10~% erg. Finally, let AT =
0.00001.

Figures 2.6-2.8 show the complex motions of @1, @2, @3, respectively,
every 5000 time steps over 5000000 time steps. The trajectories are complex
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Figure 2.7. Motion of Q2.

Figure 2.8. Motion of Q3.

three dimensional motions, which are not available analytically. In all cases,
one finds that |X;| < 3,|Y;| < 3,|Z;| < 3,7 = 1,2,3 and that each X,Y,Z
takes on both positive and negative values. The three electrons are usu-
ally well separated, as is shown typically in Table 2.1, while the system
is held together by the single positron at the origin. The entries in the
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Table 2.1. Positions of Q1,Q2, Q3.

T Q X Y z

1000000 @1  —0.7091 2.4993 0.6711
Q2 0.6711  —0.7091 2.4993
Q3 2.4993 0.6711  —0.7091
2000000 Q1 1.2035 —0.9622 —0.2833
Q2 —0.2833 1.2035 —0.9622
Q3 —0.9622 —0.2833 1.2035
3000000 Q1 1.6067 1.3750  —0.9647
Q2 —0.9647 1.6067 1.3750
Q3 1.3750  —0.9647 1.6067
4000000 @1 —0.4644 —1.7039 1.4298
Q2 1.4297 —0.4644 —1.7039
Q3 —1.7039 1.4296  —0.4644
5000000 Q1 1.5599  —0.2895 0.4383
Q2 0.4354 1.5472  —0.2751
Q3 —0.2727 0.4340 1.5471

table indicate that, to four decimal places, there may be some symmetry in
the three trajectories due to the special initial conditions of the problem.
However, this is revealed to be false at the times T° = 4000000, 5000000.
Thereafter, the system becomes physically unstable as Q2 begins to oscil-
late around the positron, thus negating the effect of the positron on @) and
Q3. Replacement of the positron by a fixed positive charge three times that
of the positron yields a physically stable system with electron trajectories
as complex as those shown in Figures 2.6-2.8.

2.7. The Calogero Hamiltonian System

Thus far we have emphasized a Newtonian formulation of the N-body prob-
lem. However, a more general formulation would use Hamiltonians. In this
section we will discuss a Calogero Hamiltonian system and in the next we
will discuss a Toda Hamiltonian system.

A Calogero Hamiltonian system (Calogero (1975), Marsden (1981)) is a
system of N particles on a line with Hamiltonian

Zpl + Z (2.43)

i#] 4)°
1,5=1
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For (2.43),

N
2_pi (2.44)

is a system invariant.

We will show how to reformulate particle interactions characterized by
(2.43) by means of difference equations so that (2.43) and (2.44) continue
to remain system invariants.

For clarity and intuition, let us begin with a two-particle Calogero
system whose Hamiltonian is

12
H=g2 v+

Let At > 0, and t, = kAt,k = 0,1,2,.... Denote p1,p2,q1,q2 at time ¢,
by p1.k, P2,k Q1 ,k» G2,%, Tespectively. For ¢ = 1,2 and k =0,1,2,..., define

G O # a2 (2.45)

) + p; ; —q;
pz,k+12 Pik _ %,HlAt i,k (2.46)
Pt “Pik (247)
where
Fip=2 (]1,k+1—|'C]1,k—C12,k-~-1_ql’f27 Gk # QR k=012,

(qu - QQ,k)Q(QLkJrl - Q2,k+1)
(2.48)

Fop = —Fip. (2.49)

Theorem 2.8. Given pi19,p2,0,q1,0,92,0, then (2.47)~(2.49) imply the
invariance of p1 + P2k, that is,

DLk + P2k =P1o+Dp2o, k=0,1,2,.... (2.50)
Proof. From (2.47)-(2.49)
P1k+1 = P1k + (AL)F1 g,
P2,kt1 = D2,k — (AL)Fy .
Hence, for £k =0,1,2,...,
P1,k+1 + D2.k+1 = P1,k + D2k,
which implies (2.50). O
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Theorem 2.9. Difference formulas (2.46)—(2.49) imply the invariance of
Hamiltonian (2.45) for given p1,0,P2,0, 41,05 92,0, that is, for k=10,1,2,...,

1 2

L, 5 2 L. 5 2
— —_— = - —_— 2.51
5 (Pl,k +p2,k}) + (r—r)? 2 (p1,0 +P2,o) + (@0 —d0)? (2.51)
Proof. Let
n—1
Wy, = Z [(q1h1 — qup) Fr + (G201 — G2.k) For) - (2.52)
k=0
Then, from (2.46) and (2.47),
n—1
P1k+1 — D1k P2 k+1 — D2,k
W, = [ q1,k+1 — g1 k)+T + (g2,641 — %,UE}
k=0
n—1
= o, k+1 o, k Pl,k+1 *pm) + W(p27k+l - pz,k)}
k=0
1 n—1
=3 [(P%,kﬂ - P?,k) + (p%,kJrl - p%k)]
k=0

so that
1 1
Wi = 5 (P10 +P50) = 5 (P~ Pho)- (2.53)

However, Egs. (2.48), (2.49), and (2.52) imply

n—1

Q1k+1 T 91k — Q2,k+1 — 92,k
W, =2 Qe+l — QL) : ’ :
! ,;) {( i )(QI,k = @2.5)* (@1, k41 — G2,641)?

Qk+1 + 91k — Q2,k+1 — G2,k }

—(Q2,k+1 — 92,k
( * )(QI,k - C]Q,k)Q(Q1,k+1 - QQ,k+1)2

_ Z (Q17k+1 - Q27k+1>2 - (qu - (J2,k)2
(fh,k - QQ,k)2(Q1,k+1 - QZ,k+1)2

k=0
n—1

1 1
—9 _ ’
z:;) {(qm —a2k)®  (qk+1 — Q27k+1>2]

k

so that

2 2
W, = — . 2.54
" (fh,o - QZ,O)2 (CI1,n - (]2,n)2 ( )
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Elimination of W,, between (2.53) and (2.54) then yields (2.51) and the
theorem is proved.

The extension to systems of N particles then follows directly from for-
mulation (2.46)—(2.49), but with ¢ =1,2,..., N.

To implement the formulation practically, consider system (2.46)—(2.49)
with the initial data p1o = 1,p20 = —1,q1,0 = 1,420 = —1. Then the
Newtonian iteration formulas for solving the system at ¢y4; in terms of
data at t; are

1 p§"2 1 TPk
qylkil) =q1,k+ At % (2.55)
(n+1) P%H + D2k
Gt = Qo+ A | = (2.56)
(n+1) (n+1)
n a + a1k —4 — G2,k
P(1k++11) = p1 g+ 2A¢ | AL 12 (n+21,)k+1 (n+21) 2] (2.57)
(91,5 = g2,%) (q1,k+1 - Q2,k+1)
n n+1
(n+1) _ _9AL qililrll) +aqik— qé,;jﬂ) — Q2 .
Dy 1 = P2k ( - )2( D (n+1))2 . (2.58)
Qe — 92,k)°\ 91 k1 — D2k+1

Calculation for 500000 steps with At = 0.0001 yields the typical results
shown in Table 2.2 every 50000 time steps. The table shows clearly that
both the Hamiltonian and p; + po are conserved. In addition, it shows an
increasingly repulsive effect which the particles exert on each other. O

Table 2.2. Calogero.

k H q1 92 P1 P2
1 1.5 1.000000 —1.000000 1.000000 —1.000000
50000 1.5 6.964067 —6.964067  1.220529 —1.220529

100000 1.5 13.076572 —13.076572  1.223551  —1.223551
150000 1.5 19.196231 —19.196231 1.224191 —1.224191
200000 1.5 25.317857  —25.317857  1.224427  —1.224427
250000 1.5 31.440301 —31.440301 1.224539  —1.224539
300000 1.5 37.563163 —37.563163  1.224601  —1.224601
350000 1.5 43.686267 —43.686267 1.224638 —1.224638
400000 1.5 49.809524  —49.809524  1.224663 —1.224663
450000 1.5 55.932884 —55.932884  1.224680 —1.224680
500000 1.5 62.056317 —62.056317 1.224692  —1.224692
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2.8. The Toda Hamiltonian System

A Toda Hamiltonian system (Toda (1967)) is a system of N particles on a
line with Hamiltonian

1 N N—-1
_ 2 L
H=3 lei + Z; exp(q; — git1).- (2.59)

We will show how to reformulate particle interactions characterized by
(2.59) by means of difference equations so that (2.44) and (2.59) remain
system invariants. Formulas (2.46)—(2.49), for N = 2, need be modified only
slightly, that is, (2.48) needs to be changed, and this is done as follows:

(q1,k+1—92,k+1)— (91, —q2,%) ’ (ql’k+1 - ql’k) - (q2,k+1 - q2,k) 7é 0

_exp(q1,k+1—92,k+1)—exXP(q1,k—q2,k) .
=
—exp(q1k — q2.1); (@141 — Q1) — (@241 — G2,6) = 0.

(2.60)

Theorem 2.10.  Given p1,0,P2,0,¢1,0, 92,0, then Egs. (2.46), (2.47), (2.49),
(2.60) imply

PLk + P2k =pro+p2o, k=01,2,.... (2.61)
Proof. The proof is essentially identical to that of Theorem 2.8. ]

Theorem 2.11. Under the assumptions of Theorem 2.10, it follows for
k=0,1,2,..., that

(pTo+D30) +exp(qro—q20)-  (2.62)

N | =

(07 k105 %) Fexp(qu e —2.0) =

N |

Proof. Consider first the case (q1,x+1 — q1,5) — (g2,5+1 — @2,1) # 0. Recall
also Eq. (2.52), that is,

n—1

Wy = Z [(q1,541 — qu6) Fik + (@2,6401 — @2,6) Foi].-
k=0

Thus, Eq. (2.53), that is

1
Wy = (p%,n +p%7n> - 5(])%,0 - P;o)

M| —

is again valid, using the same argument as used to derive (2.53).
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Next, Eqs. (2.46), (2.47), (2.49), (2.52) and (2.60) imply

n—1
explq1,k+1 — 92,k+1) — €XPlq1,k — 42,k
Wy = Z {(Q1,k+1 — 1K) [— (it +1) ( )}
k=0

((Z1,k+1 - QQ,kJrl) - (CI1,1<: - QZ,k)

exp(q1 k+1 — q2.k+1) — exp(qix — QQ,k)} }

+ (@2,k+1 — @2,k {
(G241 = d2.0) (q1,k41 — @2,641) — (@16 — G2.)

1

= > {—lexp(q1,k+1 — @2.6+1) — exp(q1.k — G2.)]},
0

3
|

b
Il

so that

W, = exp(q1,0 — ¢2,0) — €xP(q1,n — G2,n)- (2.63)

Finally, elimination of W,, between Eqgs. (2.53) and (2.63) yields (2.62).
In the second case, when (g1 k+1 — ¢q1,%) — (g2.k+1 — g2.x) = 0, the corre-
sponding summation term in (2.52) becomes simply

[(qrk+1 — q16) — (@241 — @2,0)][— exP(q1,6 — G2,1)]
which is zero, and the theorem continues to be valid. O

Practical implementation uses formulas entirely analogous to
(2.55)—(2.58), but which incorporate (2.60) for the Toda lattice. Calculation
for 240000 steps with At = 0.000001 with initial data 10 =1, g20 = —1,
p1,0 = 10, pa o = —10 yields the results in Table 2.3. The second part of
(2.60) is essential numerically at the turning point, which occurs between

Table 2.3. Toda.

k H q1 q2 D1 D2
1 107.39  1.000000 —1.000000 10.000000 —10.000000
20000 107.39 1.198295 —1.198295 9.818524 —9.818524
40000 107.39 1.392152 —1.392152 9.549895 —9.549895
60000 107.39 1.579463 —1.579463 9.156625 —9.156625
80000 107.39 1.757265 —1.757265 8.590050 —8.590050
100000 107.39 1.921525 —1.921525 7.792399 —7.792399
120000 107.39  2.067027 —2.067027 6.7051120 —6.7051120
140000 107.39 2.187513 —2.187513 5.286525 —5.286525
160000 107.39 2.276273 —2.276273 3.537755 —3.537755
180000 107.39 2.327260 —2.327260 1.526700 —1.526700
200000 107.39 2.336502 —2.336502 —0.609200 0.609200
220000 107.39 2.303235 —2.303235 —2.694399 2.694399

240000 107.39  2.230142  —2.230142 —4.569209 4.569209
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k = 180000 and k£ = 200000. The table indicates clearly the invariance of
both H and p; + ps.

2.9. Remarks

In applying Newton’s iteration formulas to the resulting algebraic or tran-
scendental system of the method of Section 2.2, it is convenient to know how
many solutions the system has. We now give an example to show that the
solution need not be unique, and indeed has two solutions. Each problem

one considers will require a related analysis.
Consider the initial value problem

F=2% z(0)=1, @=1. (2.64)

Choosing ¢(z) = —3?, the system to be solved is
Tht1 = Tk + = (At)(vk_H + 'Uk) (2.65)
Vg1 = Vg + = (At) (2711 + Thp1Tk + 27). (2.66)

Substitution of (2.66) into (2.65) yields

Th+ <1 - (Aﬁt)2> The1 + <1 + (Aitﬁ + (A6t)> =0. (2.67)

Since the initial conditions are given in (2.38), it follows from (2.67) that

z%+<1—(£)2>z1+< (AG) (Aﬁt)):o. (2.68)

However, examination of the discriminant of (2.68) reveals that for At <
0.79490525, Eq. (2.68) has two real roots. Indeed, one must choose the
negative sign in the quadratic formula to get the correct root. For At = 0.01,
the correct physical approximation is x; = 1.01005, while the incorrect
solution is 7 = 59998.

Note also that if in (2.5) one would find that any rim, nt1 = 7im,n, then
O(Timon+1) = &(Tim,n). In this case, the corresponding term in (2.6) need
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only be replaced by
o¢

_(Tlm,nJrl - 7Alm,n) .
a T=Tlm,n
and the theorem will continue to be valid.
Note finally that conservative methodology will be applied again in

Chapter 8.
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