Chapter 1.
Examples and Numerical Experiments

This chapter introduces some interesting examples of differential equations and il-
lustrates different types of qualitative behaviour of numerical methods. We deliber-
ately consider only very simple numerical methods of orders 1 and 2 to emphasize
the qualitative aspects of the experiments. The same effects (on a different scale)
occur with more sophisticated higher-order integration schemes. The experiments
presented here should serve as a motivation for the theoretical and practical inves-
tigations of later chapters. The reader is encouraged to repeat the experiments or to
invent similar ones.

I.1 First Problems and Methods

Numerical applications of the case of two dependent variables are not
easily obtained. (A.J. Lotka 1925, p. 79)

Our first problems, the Lotka—Volterra model and the pendulum equation, are dif-
ferential equations in two dimensions and show already many interesting geometric
properties. Our first methods are various variants of the Euler method, the midpoint
rule, and the Stormer—Verlet scheme.

I.1.1 The Lotka—Volterra Model

We start with an equation from mathematical biology which models the growth of
animal species. If a real variable u(t) is to represent the number of individuals of a
certain species at time ¢, the simplest assumption about its evolution is du/dt = u-a,
where a is the reproduction rate. A constant o leads to exponential growth. In the
case of more species living together, the reproduction rates will also depend on
the population numbers of the orher species. For example, for two species with
u(t) denoting the number of predators and v(t) the number of prey, a plausible
assumption is made by the Lotka—Volterra model

= u(v—2)

1.1
v = v(l —u), (L1

where the dots on u and v stand for differentiation with respect to time. (We have
chosen the constants 2 and 1 in (1.1) arbitrarily.) A.J. Lotka (1925, Chap. VIII) used
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Fig. 1.1. Vector field, exact flow, and numerical flow for the Lotka—Volterra model (1.1)

this model to study parasitic invasion of insect species, and, with its help, V. Volterra
(1927) explained curious fishing data from the upper Adriatic Sea following World
War L.

Equations (1.1) constitute an autonomous system of differential equations. In
general, we write such a system in the form

v=Ffy)- (1.2)

Every y represents a point in the phase space, in equation (1.1) above y = (u,v)
is in the phase plane R2. The vector-valued function f(y) represents a vector field
which, at any point of the phase space, prescribes the velocity (direction and speed)
of the solution y(t) that passes through that point (see the first picture of Fig. 1.1).
For the Lotka—Volterra model, we observe that the system cycles through three
stages: (1) the prey population increases; (2) the predator population increases by
feeding on the prey; (3) the predator population diminishes due to lack of food.

Flow of the System. A fundamental concept is the flow over time . This is the
mapping which, to any point yq in the phase space, associates the value y(t) of the
solution with initial value y(0) = y. This map, denoted by y;, is thus defined by

we(yo) =y(t) if  y(0) = yo. (1.3)

The second picture of Fig. 1.1 shows the results of three iterations of ¢; (with t =
1.3) for the Lotka—Volterra problem, for a set of initial values yo = (uq, vp) forming
an animal-shaped set A.!

Invariants. If we divide the two equations of (1.1) by each other, we obtain a single
equation between the variables u and v. After separation of variables we get

g l—uﬁ_-n—?

d
= U= T I(u,v)

! This cat came to fame through Arnold (1963).
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where
Iu,v) =Inu—u+2lnv—wv, (1.4)

so that I(u(t),v(t)) = Const for all t. We call the function I an invariant of the
system (1.1). Every solution of (1.1) thus lies on a level curve of (1.4). Some of
these curves are drawn in the pictures of Fig. 1.1. Since the level curves are closed,
all solutions of (1.1) are periodic.

1.1.2 First Numerical Methods

Explicit Euler Method. The simplest of all numerical methods for the system (1.2)
is the method formulated by Euler (1768),

Yn+1 = Yn + hf(yn). (1.5)

It uses a constant step size h to compute, one after the other, approximations yi, ¥z,
ya, ... to the values y(h), y(2h), y(3h), ... of the solution starting from a given
initial value y(0) = yo. The method is called the explicit Euler method, because
the approximation y,,; is computed using an explicit evaluation of f at the already
known value v,,. Such a formula represents a mapping

Dy Yn — Yntls

which we call the discrete or numerical flow. Some iterations of the discrete flow for
the Lotka—Volterra problem (1.1) (with h = 0.5) are represented in the third picture
of Fig. 1.1.

Implicit Euler Method. The implicit Euler method

Pl =ty H B g1 (1.6)

is known for its all-damping stability properties. In contrast to (1.5), the approx-
imation %, 1 is defined implicitly by (1.6), and the implementation requires the
numerical solution of a nonlinear system of equations.

Implicit Midpoint Rule. Taking the mean of y,, and y,,1 in the argument of f, we
get the implicit midpoint rule

yrn+yn+l)h (1.7)

Yn+1 = Un + hf( 2

It is a symmetric method, which means that the formula is left unaltered after ex-
changing y,, < Yn+1 and h < —h (more on symmetric methods in Chap. V).

Symplectic Euler Methods. For partitioned systems

U = a(u._-v} (i 8)

o = b(u,v),
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Fig. 1.2. Solutions of the Lotka—Volterra equations (1.1) (step sizes h = 0.12; initial values
(2, 2) for the explicit Euler method, (4, 8) for the implicit Euler method, (4, 2) and (6, 2) for
the symplectic Euler method)

such as the problem (1.1), we consider also partitioned Euler methods

Upyl = Up + h-a(“"n.\ i"‘n+l) . Up4+1 = Uy + J'-t'f'--"'(”-1'1+'l s Uu)

1.9
Un+1 = Up + h-b{“n-. Vn+1 )- Un41 = Un + hb('uu-*—l 3 T“u)- ( )

which treat one variable by the implicit and the other variable by the explicit Euler
method. In view of an important property of this method, discovered by de Vogelaere
(1956) and to be discussed in Chap. VI, we call them symplectic Euler methods.

Numerical Example for the Lotka—Volterra Problem. Our first numerical exper-
iment shows the behaviour of the various numerical methods applied to the Lotka—
Volterra problem. In particular, we are interested in the preservation of the invariant
I over long times. Fig. 1.2 plots the numerical approximations of the first 125 steps
with the above numerical methods applied to (1.1), all with constant step sizes. We
observe that the explicit and implicit Euler methods show wrong qualitative be-
haviour. The numerical solution either spirals outwards or inwards. The symplectic
Euler method (implicit in u and explicit in v), however, gives a numerical solution
that lies apparently on a closed curve as does the exact solution. Note that the curves
of the numerical and exact solutions do not coincide.

1.1.3 The Pendulum as a Hamiltonian System

A great deal of attention in this book will be addressed to Hamiltonian problems,
and our next examples will be of this type. These problems are of the form

p=—Hy(p.q). i=Hy(p.q). (1.10)

where the Hamiltonian H(py,...,pd,q1.-..qq) represents the total energy; g; are
the position coordinates and p; the momenta for ¢ = 1, ..., d, with d the number of
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degrees of freedom; H,, and H, are the vectors of partial derivatives. One verifies
easily by differentiation (see Sect. IV.1) that, along the solution curves of (1.10),

H(p(t),q(!.)) = Const, (1.11)

i.e., the Hamiltonian is an invariant or a first integral. More details about Hamil-
tonian systems and their derivation from Lagrangian mechanics will be given in
Sect. VL1

Pendulum. The mathematical pendulum (mass m = 1,
massless rod of length / = 1, gravitational acceleration
g = 1) is a system with one degree of freedom having the
Hamiltonian

H(p,q) = %pz — Cos ¢, (1.12)

so that the equations of motion (1.10) become
p = —sing, q=p. (1.13)

Since the vector field (1.13) is 27-periodic in g, it is natural to consider ¢ as a vari-
able on the circle S'. Hence, the phase space of points (p, q) becomes the cylinder
R x S'. Fig. 1.3 shows some level curves of H(p, q). By (1.11), the solution curves
of the problem (1.13) lie on such level curves.

exact flow explicit Euler symplectic Euler

Fig. 1.3. Exact and numerical flow for the pendulum problem (1.13); step sizes h =t = 1

Area Preservation. Figure 1.3 (first picture) illustrates that the exact flow of a
Hamiltonian system (1.10) is area preserving. This can be explained as follows: the
derivative of the flow ; with respect to initial values (p, q).

A(p(t).q(t))

.ﬂ_" q 1) = flc
¢1(p.4) d(p,q)
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satisfies the variational equation 2

. _H')( _Hu
¢i(p.q) = ( a "

rp H‘:’P

) e (paq) ,

where the second partial derivatives of H are evaluated at ;(p, ). In the case of
one degree of freedom (d = 1), a simple computation shows that

ﬁ(ﬁp(f) dq(t)  Ip(t) Bq({))
dt\ dp Oq dg  Op

%det.g;(p,q): ==l
Since y is the identity, this implies det ¢} (p, ¢) = 1 for all ¢, which means that the
flow @;(p, q) is an area-preserving mapping.

The last two pictures of Fig. 1.3 show numerical flows. The explicit Euler
method is clearly seen not to preserve area but the symplectic Euler method is (this
will be proved in Sect. V1.3). One of the aims of ‘geometric integration’ is the study
of numerical integrators that preserve such types of qualitative behaviour of the ex-
act flow.

explicit Euler symplectic Euler Stormer—Verlet

Fig. 1.4. Solutions of the pendulum problem (1.13); explicit Euler with step size h = 0.2,
initial value (po,qo) = (0,0.5); symplectic Euler with A = 0.3 and initial values qo = 0,
po = 0.7,1.4, 2.1; Stormer—Verlet with h = 0.6

Numerical Experiment. We apply the above numerical methods to the pendulum
equations (see Fig. 1.4). Similar to the computations for the Lotka—Volterra equa-
tions, we observe that the numerical solutions of the explicit Euler and of the im-
plicit Euler method (not drawn in Fig. 1.4) spiral either outwards or inwards. The
symplectic Euler method shows the correct qualitative behaviour, but destroys the
left-right symmetry of the problem. The Stormer—Verlet scheme, which we discuss
next, works perfectly even with doubled step size.

2 As is common in the study of mechanical problems, we use dots for denoting time-
derivatives, and we use primes for denoting derivatives with respect to other variables.
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Fig. 1.5. Carl Stormer (left picture), born: 3 September 1874 in Skien (Norway), died: 13 Au-
gust 1957.
Loup Verlet (right picture), born: 24 May 1931 in Paris

I.1.4 The Stormer—Verlet Scheme
The above equations (1.13) for the pendulum are of the form

= fl(g
1_ 1@ or G = f(q) (1.14)
a=p
which is the important special case of a second order differential equation. The most
natural discretization of (1.14) is

In+1 — 2011 + On—1 = h"zf(qn)- [115)

which is just obtained by replacing the second derivative in (1.14) by the central
second-order difference quotient. This basic method, or its equivalent formulation
given below, is called the Stérmer method in astronomy, the Verlet method * in mole-
cular dynamics, the leap-frog method in the context of partial differential equations,
and it has further names in other areas (see Hairer, Lubich & Wanner (2003), p. 402).
C. Stormer (1907) used higher-order variants for numerical computations concern-
ing the aurora borealis. L. Verlet (1967) proposed this method for computations in
molecular dynamics, where it has become by far the most widely used integration
scheme.

Geometrically, the Stormer—Verlet method can be seen as produced by parabo-
las, which in the points ¢,, possess the right second derivative f(g,) (see Fig. 1.6

3 Irony of fate: Professor Loup Verlet, who later became interested in the history of science,
discovered precisely “his” method in Newton’s Principia (Book 1, figure for Theorem I,
see Sect. 1.2.1 below).
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Fig. 1.6. [llustration for the Stérmer—Verlet method

to the left). But we can also think of polygons, which possess the right slope in the
midpoints (Fig. 1.6 to the right).
Approximations to the derivative p = ¢ are simply obtained by

Gn+1 — n—1

dn+1 — Gn
2h '

h

One-Step Formulation. The Stormer—Verlet method admits a one-step formulation
which is useful for actual computations. The value g,, together with the slope p,, and
the second derivative f(q,), all at ¢,,, uniquely determine the parabola and hence
also the approximation (P41, @n1) at t, 1. Writing (1.15) as py 172 —Pn—1/2 =
hf(gn) and using p,,1/2 +Pu_1/2 = 2Pn , We get by elimination of either p,, 412
or p,,_1 /2 the formulae

Pn = and Pny1/2 = (1.16)

h ,
Pn+1/2 = Pn + b j(Qﬂ)
n+1 = fn # h-p-n.——lf“z (1 17)
h
Pntl = Pniir/zt 3 flans1)

which is an explicit one-step method @4, : (gn.Pn) — (Gny1,Pns1) for the corre-
sponding first order system of (1.14). If one is not interested in the values p;, of the
derivative, the first and third equations in (1.17) can be replaced by

Pn+1/2 = Pn—1/2 =+ h‘f({f?l}‘

1.2 The Kepler Problem and the Outer Solar System

I awoke as if from sleep, a new light broke on me. (J. Kepler; quoted
from J.L.E. Dreyer, A history of astronomy, 1906, Dover 1953, p.391)

One of the great achievements in the history of science was the discovery of the
laws of J. Kepler (1609), based on many precise measurements of the positions of
Mars by Tycho Brahe and himself. The planets move in elliptic orbits with the sun
at one of the foci (Kepler’s first law)
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d
g Y =a—aecos E, 2.
I +ecosyp

(where @ = great axis, e = eccentricity, b =
avl—e?,d = byl —e2 = a(l —€?), E = ec-
centric anomaly, ¢ = true anomaly).

Newton (Principia 1687) then explained this
motion by his general law of gravitational attrac-
tion (proportional to 1/7?) and the relation between
forces and acceleration (the “Lex II” of the Prin-
cipia). This then opened the way for treating arbi-
trary celestial motions by solving differential equa-
tions.

Two-Body Problem. For computing the motion of two bodies which attract each
other, we choose one of the bodies as the centre of our coordinate system; the motion
will then stay in a plane (Exercise 3) and we can use two-dimensional coordinates
q = (q1,q2) for the position of the second body. Newton’s laws, with a suitable
normalization, then yield the following differential equations
q1 i q2

RS TR = s T mTaTa- {22}
(qF +43)3/2 ! (af +q3)%/

This is equivalent to a Hamiltonian system with the Hamiltonian

1 1
H(p1,p2,q1,8) = = (p} +p3) - ——,
Vai + a6

(}12—

Pi = G- (2.3)

2

L.2.1 Angular Momentum and Kepler’s Second Law

The system has not only the total energy H(p.q) as a first integral, but also the
angular momentum

L(p1.p2,q1,92) = q1p2 — q2p1- 2.4
This can be checked by differentiation and is nothing other than Kepler's second
law, which says that the ray "M sweeps equal areas in equal times (see the little
picture at the beginning of Sect.1.2).

A beautiful geometric justification of this law is due to I. Newton* (Principia
(1687), Book 1, figure for Theorem I). The idea is to apply the Stormer—Verlet
scheme (1.15) to the equations (2.2) (see Fig.2.1). By hypothesis, the diago-
nal of the parallelogram g,,—1¢n¢n41, Which is (gn11 — @) — (@0 — Gn_1) =
Gn+1 — 2qn + gn—1 = Const - f(g,), points towards the sun S. Therefore, the
altitudes of the triangles ¢,,_1¢, S and g,,+1¢, S are equal. Since they have the com-
mon base ¢, S, they also have equal areas. Hence

dCt((]n_ 1:9n — Qn l) . det'(gv:.‘ Gn+1 — qn)
and by passing to the limit A — 0 we see that det(q, p) = Const. This is (2.4).

* We are grateful to a private communication of L. Verlet for this reference
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Fog.23.

Fig. 2.1. Proof of Kepler’s Second Law (left); facsimile from Newton’s Principia (right)

We have not only an elegant proof for this invariant, but we also see that the
Stormer—Verlet scheme preserves this invariant for every h > .

1.2.2 Exact Integration of the Kepler Problem

Pour voir présentement que cette courbe ABC' ... est tolijours une Sec-
tion Conique, ainsi que Mr. Newton 1'a supposé, pag. 55. Coroll.l. sans le
démontrer; il y faut bien plus d’adresse: (Joh. Bernoulli 1710, p.475)

It is now interesting, inversely to the procedure of Newton, to prove that any solution
of (2.2) follows either an elliptic, parabolic or hyperbolic arc and to describe the
solutions analytically. This was first done by Joh. Bernoulli (1710, full of sarcasm
against Newton), and by Newton (1713, second edition of the Principia, without
mentioning a word about Bernoulli).
By (2.3) and (2.4), every solution of (2.2) satisfies the two relations
% (¢f +4d3) — % = Hy, 0142 — g2q1 = Lo, (2.5)
g7 T 43

where the constants Hy and Lg are determined by the initial values. Using polar
coordinates q; = 7 cos ¢, g2 = 7 sin , this system becomes

1 . 1 ’
2 (?.‘2 1 ?'2¢2) - ?—‘ = H[], 'J"Zf,'.? = LQ, (26)
For its solution we consider r as a function of ¢ and write © = :{é - . The elimina-
tion of ¢ in (2.6) then yields
1 dry2 L\ L3 1
| {=— <) — ——= Hp.
2 ((dap) e ) rtor 2
In this equation we use the substitution r = 1/u, dr = —du/u?, which gives (with
"=d/dp)
1 2 2 w H(‘]
i(u" + u®) — 12 =0. (2.7

This is a “Hamiltonian” for the system
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1 il 1 s(p — p*
W' +u== ie, u==+cicosp+cosing = +ecose ) (2.8)
d d d
where d = Lf} and the constant e becomes, from (2.7),
e =1+ 2HyL2 (2.9)

(by Exercise 7, the expression 14+-2Hq L7 is non-negative). This is precisely formula
(2.1). The angle " is determined by the initial values ry and y,. Equation (2.1)
represents an elliptic orbit with eccentricity e for Hy < 0 (see Fig. 2.2, dotted line),
a parabola for Hy = 0, and a hyperbola for H; > 0.

Finally, we must determine the variables r and  as functions of t. With the
relation (2.8) and r = 1/u, the second equation of (2.6) gives

&2
(1+ ecos(p — ¢*))

5 dp = Lo dt (2.10)

which, after an elementary, but not easy, integration, represents an implicit equation
for ().

400 000 steps
h = 0.0005

4000 steps

-1 explicit Euler symplectic Euler h=0.05

4000 steps
h=0.05

implicit midpoint 4000 steps
h =0.05

|

Stormer—Verlet

Fig. 2.2. Numerical solutions of the Kepler problem (eccentricity e = 0.6; in dots: exact
solution)
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I.2.3 Numerical Integration of the Kepler Problem
For the problem (2.2) we choose, with 0 < e < 1, the initial values

l+e

a0 =1-e @0)=0, @(0)=0, ¢0)=4/7—.

(2.11)

This implies that Hy = —1/2, Ly = V1 —€?,d = 1 — €2 and ¢* = 0. The period
of the solution is 27 (Exercise 5). Fig. 2.2 shows some numerical solutions for the
eccentricity ¢ = 0.6 compared to the exact solution. After our previous experience,
itis no longer a surprise that the explicit Euler method spirals outwards and gives a
completely wrong answer. For the other methods we take a step size 100 times larger
in order to “'see something”. We see that the nonsymmetric symplectic Euler method
distorts the ellipse, and that all methods exhibit a precession effect, clockwise for
Stormer—Verlet and symplectic Euler, anti-clockwise for the implicit midpoint rule.
The same behaviour occurs for the exact solution of perturbed Kepler problems
(Exercise 12) and has occupied astronomers for centuries,

Our next experiment (Fig.2.3) studies the conservation of invariants and the
global error. The main observation is that the error in the energy grows linearly for
the explicit Euler method, and it remains bounded and small (no secular terms) for
the symplectic Euler method. The global error, measured in the Euclidean norm,
shows a quadratic growth for the explicit Euler compared to a linear growth for
the symplectic Euler. As indicated in Table 2.1 the implicit midpoint rule and the
Stormer—Verlet scheme behave similar to the symplectic Euler, but have a smaller

=

L conservation of energy —
0k — explicit Euler, h = 0.0001
I T
="
01 F o
I S symplectic Euler, h = 0.001
_j_-ﬂ/i_/l A il i 1 Ay A ] A A > R

7 "R g el 7 e % 7 s
50 100

|
' \ || U global error of the solution
{ \ j explicit Euler, h = 0.0001

L symplectic Euler, h = 0.001

50 100

S
|

Fig. 2.3. Energy conservation and global error for the Kepler problem
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Table 2.1. Qualitative long-time behaviour for the Kepler problem; # is time, h the step size

method ” error in H ‘ errorin L. | global error
explicit Euler O(th) O(th) O(t*h)
symplectic Euler O(h) 0 O(th)
implicit midpoint O(h*) 0 O(th?)
Stormer—Verlet O(h*) 0 O(th*)

error due to their higher order. We remark that the angular momentum L(p, q) is ex-
actly conserved by the symplectic Euler, the Stormer—Verlet, and the implicit mid-
point rule.

I.2.4 The Outer Solar System

The evolution of the entire planetary system has been numerically in-

tegrated for a time span of nearly 100 million years’. This calculation

confirms that the evolution of the solar system as a whole is chaotic, . . .
(G.J. Sussman & J. Wisdom 1992)

We next apply our methods to the system which describes the motion of the five
outer planets relative to the sun. This system has been studied extensively by as-
tronomers. The problem is a Hamiltonian system (1.10) (N-body problem) with

H(p‘Q‘):EZ—p Pi — GZ)Z||I?? L] (2.12)

i=0 i=1 =0 qi qJ”

Here p and g are the supervectors composed by the vectors p;, ¢; € R? (momenta
and positions), respectively. The chosen units are: masses relative to the sun, so that
the sun has mass 1. We have taken

mo = 1.00000597682

to take account of the inner planets. Distances are in astronomical units (1 [A.U.] =
149597 870 [km]), times in earth days, and the gravitational constant is

G = 2.95912208286 - 102

The initial values for the sun are taken as g (0) = (0,0,0)7 and ¢,(0) = (0,0,0)7.
All other data (masses of the planets and the initial positions and mmal veloci-
ties) are given in Table 2.2. The initial data is taken from “Ahnerts Kalender fiir
Sternfreunde 19947, Johann Ambrosius Barth Verlag 1993, and they correspond to
September 5, 1994 at 0h00.

® 100 million years is not much in astronomical time scales; it just goes back to “Jurassic
Park™.
“ We thank Alexander Ostermann, who provided us with this data.
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Table 2.2. Data for the outer solar system

planet ” mass initial position | initial velocity
—3.5023653 0.00565429
Jupiter my = 0.000954786104043 —3.8169847 | —0.00412490

—1.5507963 | —0.00190589

9.0755314 0.00168318
Saturn mz = 0.000285583733151 —3.0458353 0.00483525
—1.6483708 0.00192462

8.3101420 0.00354178
Uranus mg = 0.0000437273164546 | —16.2901086 0.00137102
—7.2521278 0.00055029

11.4707666 0.00288930
Neptune || m4 = 0.0000517759138449 | —25.7294829 0.00114527
—10.8169456 0.00039677

—15.5387357 0.00276725
Pluto ms = 1/(1.3-10%) —25.2225594 | —0.00170702
—3.1902382 | —0.00136504

explicit Euler, h = 10 implicit Euler, h = 10

Stormer—Verlet, h = 200

—_—

s

Fig. 2.4. Solutions of the outer solar system

To this system we apply the explicit and implicit Euler methods with step size
h = 10, the symplectic Euler and the Stérmer—Verlet method with much larger
step sizes h = 100 and h = 200, repectively, all over a time period of 200000
days. The numerical solution (see Fig. 2.4) behaves similarly to that for the Kepler
problem. With the explicit Euler method the planets have increasing energy, they
spiral outwards, Jupiter approaches Saturn which leaves the plane of the two-body
motion. With the implicit Euler method the planets (first Jupiter and then Saturn)
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fall into the sun and are thrown far away. Both the symplectic Euler method and
the Stormer—Verlet scheme show the correct behaviour. An integration over a much
longer time of say several million years does not deteriorate this behaviour. Let us
remark that Sussman & Wisdom (1992) have integrated the outer solar system with
special geometric integrators.

1.3 The Hénon-Heiles Model

... because: (1) it is analytically simple; this makes the computation of
the trajectories easy; (2) at the same time, it is sufficiently complicated to
give trajectories which are far from trivial . (Hénon & Heiles 1964)

The Hénon—Heiles model was created for describing stellar motion, followed for a
very long time, inside the gravitational potential Uy (r, z) of a galaxy with cylindrical
symmetry (Hénon & Heiles 1964). Extensive numerical experimentations should
help to answer the question, if there exists, besides the known invariants H and L,
a third invariant. Despite endless tentatives of analytical calculations during many
decades, such a formula had not been found.

After a reduction of the dimension, a Hamiltonian in two degrees of freedom of
the form

1
H(p.q) = 50} +p3) + U(q) (3.1)
is obtained and the question is, if such an equation has a second invariant. Here,
Hénon and Heiles put aside the astronomical origin of the problem and choose
1
2

1

ng (3.2)

Ulq) = 5(ai +a3) +aiaz —
(see citation). The potential U is represented in Fig. 3.1. When U approaches %, the
level curves of U tend to an equilateral triangle, whose vertices are saddle points

of U. The corresponding system

Fig. 3.1. Potential of the Hénon—Heiles Model and a solution
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_i!'npl_i-cil mid-point L symplectic Euler [ Stormer/Verlet
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1

100 200 100 200 100 200
Fig. 5.3. Numerical solution for the FPU problem (5.2) with data as in Sect.1.5.1, obtained
with the implicit midpoint rule (left), symplectic Euler (middle), and Stérmer—Verlet scheme
(right); the upper pictures use i = 0.001, the lower pictures h = 0.03; the first four pictures
show the Hamiltonian H — 0.8 and the oscillatory energies I, I, I3, I; the last two pictures
only show I, and [

to the stability limit of the symplectic Euler and the Stormer—Verlet methods. The
values of H and 7 are still bounded over very long time intervals, but the oscillations
do not represent the true behaviour. Moreover, the average value of I is no longer
close to 1, as it is for the exact solution. These phenomena call for an explanation,
and for numerical methods with an improved behaviour (see Chap. XIII).

1.6 Exercises
1. Show that the Lotka—Volterra problem (1.1) in logarithmic scale, i.e., by putting

p = logu and g = log v, becomes a Hamiltonian system with the function (1.4)
as Hamiltonian (see Fig. 6.1).

q flow in log. scale

Fig. 6.1. Area preservation in logarithmic scale of the Lotka—Volterra flow
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. Apply the symplectic Euler method (or the implicit midpoint rule) to problems

such as
("") - ( (v— 2}/'1-‘) (:l) _ (-31.21,!(1; ==Y )
] (1—u)/u)’ ) 7 \v*u(l —u)

with various initial conditions. Both problems have the same first integral (1.4)
as the Lotka—Volterra problem and therefore their solutions are also periodic.
Do the numerical solutions also show this behaviour?

- A general two-body problem (sun and planet) is given by the Hamiltonian

s GmM

1 1
H(p,ps,q,q5) = — PE,:PS + e pp— m

2M
where gs.q € R? are the positions of the sun (mass M) and the planet (mass
m), ps,p € R3 are their momenta, and G is the gravitational constant.
a) Prove: in heliocentric coordinates () :== ¢ — g, the equations of motion are

Q
IQIP

b) Prove that ?fé (Q(t) x Q(r}) = 0, so that Q(¢) stays for all times ¢ in the
plane E = {q; d"q = 0}, where d = Q(0) x Q(0).

Conclusion. The coordinates corresponding to a basis in E satisfy the two-
dimensional equations (2.2).

. In polar coordinates, the two-body problem (2.2) becomes

Q=—-G(M+m)

R ; SRS Iz 1

7= —V'(r) with H?}_Qﬁ_?
which is independent of . The angle (#) can be obtained by simple integration
from () = Lo/r2(t).
. Compute the period of the solution of the Kepler problem (2.2) and deduce
from the result Kepler’s “third law™.
Hint. Comparing Kepler’s second law (2.6) with the area of the ellipse gives
$LoT = abr. Then apply (2.7). The result is T = 27 (2| Ho|)~3/2 = 2ra3/2.
. Deduce Kepler’s first law from (2.2) by the elegant method of Laplace (1799).
Hint. Multiplying (2.2) with (2.5) gives

and after integration Loy = % + B, Lyg, = —% + A, where A and B are
integration constants. Then eliminate ¢; and ¢, by multiplying these equations
by g2 and —q; respectively and by subtracting them. The result is a quadratic
equation in ¢ and gs.

. Whatever the initial values for the Kepler problem are, 1 + QHULE, > 0 holds.
Hence, the value e is well defined by (2.9).

Hint. Ly is the area of the parallelogram spanned by the vectors ¢(0) and ¢(0).
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. Implementation of the Stormer—Verlet scheme. Explain why the use of the one-

step formulation (1.17) is numerically more stable than that of the two-term
recursion (1.15).

. Runge—Lenz—Pauli vector. Prove that the function

P1 0 1 0
Alp.g) = | p2 | X 0 —— | g

T3 3
0 q1p2 — q2p1 @i taz \ o

is a first integral of the Kepler problem, i.e., A(p(t),q(t)) = Const along
solutions of the problem. However, it is not a first integral of the perturbed
Kepler problem of Exercise 12.

. Add a column to Table 2.1 which shows the long-time behaviour of the error in

the Runge-Lenz—Pauli vector (see Exercise 9) for the various numerical inte-
grators.

. For the Kepler problem, eliminate (p;, p2) from the relations H (p, q) = Const,

L(p,q) = Const and A(p,q) = Const. This gives a quadratic relation for
(q1,q2) and proves that the solution lies on an ellipse, a parabola, or on a hy-
perbola.

Study numerically the solution of the perturbed Kepler problem with Hamil-
tonian

1 7
Vai+a 3V(af +a3)*
where 1 is a positive or negative small num-
ber. Among others, this problem describes
the motion of a planet in the Schwarzschild
potential for Einstein’s general relativity the-
ory’. You will observe a precession of the
perihelion, which, applied to the orbit of Mer-
cury, represented the historically first verifi-
cation of Einstein’s theory (see e.g., Birkhoff
1923, p. 261-264).

1. . _
H(pi,p2,q1,q2) = B (p+0p3) -

u'
=10

The precession can also be expressed analytically: the equation for u = 1/r as
a function of ¢, corresponding to (2.8), here becomes

1 ,
u'tu= gt pu?, (6.1)

where d = L3. Now compute the derivative of this solution with respect to i,
at ;1 = 0 and u = (1 + e cos(p — ¢*))/d after one period t = 2. This leads to
n = p(e/d?)-2m sin ¢ (see the small picture). Then, for small s, the precession
after one period is

2

Ap = y

(6.2)

" We are grateful to Prof. Ruth Durrer for helpful hints about this subject.
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