
Copyright

by

James Michael Rath

2007

This work is licensed under the Creative Commons Attribution-ShareAlike 2.5 License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-sa/2.5/ or

send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California,

94105, USA.

Some software implementing the ideas is this dissertation is available from the author; it

too is available under a Attribution-ShareAlike license. Contact information for the author

appears at the end of this work.



The Dissertation Committee for James Michael Rath

certifies that this is the approved version of the following dissertation:

Multiscale Basis Optimization for Darcy Flow

Committee:

Todd Arbogast, Supervisor

Steve Bryant

Clint Dawson

Robert van de Geijn

Mary Wheeler



Multiscale Basis Optimization for Darcy Flow

by

James Michael Rath, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2007



For everyone who

helped me along the way,

Thanks Y’all.



Acknowledgments

This work was supported in part by grant DMS-0408489 from the National Science Foun-

dation. The University of Texas at Austin has generously supported me during my time

here.

James Michael Rath

The University of Texas at Austin

May 2007

v



Multiscale Basis Optimization for Darcy Flow

Publication No.

James Michael Rath, Ph.D.

The University of Texas at Austin, 2007

Supervisor: Todd Arbogast

Simulation of flow through a heterogeneous porous medium with fine-scale features can be

computationally expensive if the flow is fully resolved. Coarsening the problem gives a faster

approximation of the flow but loses some detail. We propose an algorithm that obtains the

fully resolved approximation but only iterates on a sequence of coarsened problems. The

sequence is chosen by optimizing the shapes of the coarse finite element basis functions.

As a stand-alone method, the algorithm converges globally and monotonically with

a quadratic asymptotic rate. Computational experience indicates the number of iterations

needed is independent of the resolution and heterogeneity of the medium. However, an

externally provided error estimate is required; the algorithm could be combined as an ac-

celerator with another iterative algorithm. A single “inner” iteration of the other algorithm

would yield an error estimate; following it with an “outer” iteration of our algorithm would

give a viable method.
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Chapter 1

Overview

Solving linear systems involves nonlinear operations, namely, division. At first blush, one

might expect that iterative algorithms for solving linear systems can achieve superlinear

convergence since Newton’s method does for nonlinear ones. However, only a handful of

algorithms for linear problems have this property.

In this dissertation we describe a new method for solving second order elliptic partial

differential equations such as Darcy flow problems. The algorithm optimizes basis shapes

used in solving a coarsened version of the problem; the process ends when the solution to

the coarse problem coincides with the original problem (or nearly so).

Since we optimize the basis (and not the solution directly), we trade solving a linear

system for solving a nonlinear optimization problem. Intuition may tell us that a nonlinear

problem is more difficult to solve. However, we do this because we trade a large linear

system for a small nonlinear one, and this nonlinear problem has a special structure we can

further exploit.

Our analysis shows we can achieve global, monotone, asymptotically quadratic con-

vergence with a cheap per-iteration cost. Some computational experience has also shown

that the number of iterations needed is independent of both the resolution of the flow prob-

lem and the heterogeneity of the permeability field (that is, independent of the condition

number of the problem). However, we assume an externally provided error estimate is avail-

able at each step. Our algorithm would be effective as an accelerator: an inner iteration of

another iterative method would provide an error estimate after which an outer iteration of

our method would act on that estimate.
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1.1 Motivating problem

Most parts of our proposed algorithms can be described in a purely algebraic fashion and

can be applied to any symmetric positive definite linear system. As a black-box solver, our

algorithms may do quite well. However, our original motivating problem was solving Darcy

flow problems where we face two challenges — high resolution and heterogeneous data —

that make the use of conventional solvers impractical.

Darcy’s law describes fluid flow through a porous medium. It is an empirical law that

asserts bulk flow of a fluid through the medium is proportional to the gradient of the pressure

across the medium (accounting for hydrostatic differences from gravity) [21, 8, 74, 35]:

u = −κ

µ
(∇p− ρg) .

Darcy’s law has found wide applicability in modeling subsurface flows, and has been gener-

alized to model multicomponent and multiphase flows. (The above differential form is itself

a generalization of the relation Darcy formulated.) Our primary interest is in using Darcy’s

law to model oil reservoir and groundwater contaminant flows.

Darcy’s law alone is insufficient to describe the physics: conservation of mass (the

continuity equation) and equations of state (relating density, viscosity, and permeability

to phase fraction and temperature) are necessary. In the applications being considered,

there is often a need for the velocity to be very accurate and to strictly (locally) observe

mass conservation. For simplicity, our presentation describes only Galerkin methods; these

do not produce conservative flow fields. However, there are post-processing methods that

obtain conservative velocity fields; see [18, 77], for instance. Mixed methods also produce

conservative flows [71, 29, 22, 32]; for this reason, we originally focussed on mixed methods.

We have done substantial work to develop our algorithms for mixed elements, and intend to

publish these shortly. Also, although our presentation ignores aspects of multiphase flow,

the proposed ideas and software can readily be adapted to model such flows.

The challenge of heterogeneity

Geostatistical modeling is used to generate the necessary data (porosity and permeability)

to specify the problem to be approximated [28]. This data is typically given at a very fine

resolution [30], but the goal is to predict long-range flow behavior (such as break-through

times, optimal pumping and injection rates, and total volumes produced). It is tempting,

then, to approximate the problem at a very coarse scale. However, nature is not so kind

and fine-scale features of the problem data can have substantial effects on the coarse-scale

flow behavior [30, 1].
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Therein lies one big difficulty: it is necessary to resolve the flow at very fine scales

requiring the solution of computationally ill-conditioned problems [37]. Moreover, the res-

olution cannot be reduced to shrink the size of the system: (1) heterogeneity in the per-

meability (irregular, short spatial-scale jumps) means p-refinements (high-order approxima-

tions) will not help, and (2) spatially-limited resolution and spatially-uniform heterogeneity

means h-refinements (coarse scaling) will not help either. Further, geometrically irregular

features prevent the use of more specialized solvers. For instance, if we had a well-defined

layer structure, we could use deflation coupled with any usual iterative solver to achieve

fast convergence [81, 34, 4]. However, real geologic formations are not always so neat; see

Figures 1.1 and 1.2 for two examples.

The fine-scale resolution necessary in simulations makes for poor conditioning, yet

there is still another difficulty: the jumps in the permeability can sometimes be quite severe

(spanning several orders of magnitude) between nearby locations. (Such contrasts can easily

be seen in the seismics in Figure 1.1; the scale of such contrasts are numerically detailed in

the simulated permeabilities in Figures 1.2, 5.1, and 5.5.) This makes our computation of

an approximation even more poorly conditioned.

To restate, the more heterogeneous and fine-scale the problem, the higher the condi-

tion number and the more computationally expensive it becomes to solve our flow problem.

All direct/iterative linear solvers in common use for this problem have behavior which wors-

ens with increasing condition number [38, 72]. As a means of circumventing this compu-

tational conundrum, upscaling techniques have been developed that perform computations

on a coarser scale (for faster computations) but still retain information about the fine-scale

flow and problem data (for accurate flow predictions) [30]. In upscaling the problem, some

information is always lost; an averaging procedure is used in upscaling to determine the

influence of fine-scales on the coarse-scale problem. However, the result is often of such

good quality that it seems appropriate to use it as a starting point for the full fine-scale

computation; this idea we develop here.

Proposed solution technique

We use one kind of upscaling — variational multiscale subgrid upscaling [46, 5] — to con-

struct an accelerator for solving the full fine-scale problem. Through this we hope to

broaden the range of practical-interest problems that are computationally feasible. That

is, our solver appears to be perform well with high-resolution data and is insensitive to

geometric irregularities and high contrasts in the data.

In upscaling, the flexibility of (or number of degrees of freedom in) our approximation

is reduced in order to obtain a smaller or better algebraic problem to solve. Our proposed

algorithm attempts to reintroduce the necessary flexibility into the upscaled model to be

3



Figure 1.1: Sample seismics from the Keathley Canyon in the northern Gulf of Mexico
(adapted from [47, 41]). This is an area of increasing gas and oil exploration; the USGS
survey from which the data is borrowed was intended to help characterize the nature of gas
hydrates present on the ocean floor and its near subsurface. (These hydrates are a potential
energy source as well as a hazard to drilling.) The region’s geology is driven by salt tectonics.
We show these data here because they “illustrate a rich pattern of unconformities, pinch-
outs, on-laps, and faults between the basin center and structural high at the edge of the
basin.” That is, subsurface features can have great geometric irregularties and high material
contrasts on short and long scales.

Figure 1.2: A typical sample of a geostatistically generated permeability field (from [57]).
The covariance is homogeneous and isotropic with a power law structure (β = 1/2). The
base-10 logarithm is plotted. Red indicates high permeability; the greatest is 3330 mD.
Blue indicates low permeability; the smallest is 0.712 mD. The permeabilities span about
three and a half orders of magnitude.
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able to capture the fine-scale solution. We do this by considering a parameterized family

of macro-elements for the coarse-scale shape functions; the family includes all possible fine-

scale shapes. A sequence of upscaled problems is solved in which the problem structure

(through the shape parameters, not the problem data) is gradually evolved towards a prob-

lem which has a solution that coincides with the fine-scale solution. The sequence is chosen

using nonlinear optimization techniques — Newton’s method and its ilk. These have the

potential of superlinear convergence. Each step in the optimization only requires solving an

upscaled problem, determining its fine-scale residual, and calculating a simple projection of

the residual.

Each of these operations we assume to be inexpensive. The upscaled problem is

effectively as expensive to compute as a coarse problem — a much smaller system than

the original. Calculating the residual requires only a (sparse) matrix-vector multiply and a

vector-vector addition. The required projection is an orthogonal one onto a low-dimensional

(or one-dimensional) subspace, and can be calculated by solving a small linear system and

a few vector-vector operations (or a dot product and “axpy” in the one-dimensional case).

Provided with a sufficiently accurate error estimate at each step, we can prove that

our algorithm converges globally and has an asymptotic quadratic convergence rate. We

introduce some approximations to make the algorithm more practical but as of yet are

unsure of their effect on the global convergence. With regards to an error estimate, we

conjecture that a simple smoother (such as Jacobi or Gauss–Seidel) would be sufficient to

make for a viable method, but we are unsure of the effect of an imperfect error estimate.

1.2 Outline

In Chapter 2, we describe the application of lowest-order Galerkin elements to Darcy flow,

and give a description of how variational multiscale subgrid upscaling is used to coarsen

the resulting system. This is included to introduce some terminology and notation, and

to remind the reader of how this method works. It further introduces our variant with

macroscale coarse shape functions.

In Chapter 3, we introduce an algorithm that demonstrates our nonlinear approach.

Although this algorithm is probably not practical, it lays the way for a different, geometry-

based approach in Chapter 4. We cannot prove much about the first approach but can say

much more about the geometric one. In both chapters, we introduce some modifications to

make the algorithms computationally feasible. Some changes are exact; others are approxi-

mate but provably do not affect performance. However, there are yet other approximations

that seem reasonable, but we cannot prove they do not have undesirable effects.

Chapter 5 demonstrates our algorithms on problems of practical interest in simulat-
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ing Darcy flow. Evidence is given for the proven and conjectured properties laid out in the

previous chapters.

In Chapter 6, we compare our algorithms with other similarly-featured algorithms.

There are algorithms which share our small computational complexity, our superlinear con-

vergence rate, or our insensitivity to heterogeneity, but none share all these properties (or

even any one in quite the same way).

Finally, in Chapter 7, we make some comments about the algorithms and lay out

some further research directions.

A table of symbols can be found for easy reference just after the table of contents

and list of figures. A bibliography follows the last chapter.
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Chapter 2

Problem description

In this chapter we describe the use of lowest-order Galerkin elements to discretize the Darcy

flow problem, and how we coarsen this discretization using a specially modified multiscale

basis.

2.1 Underlying fine-scale problem

Suppose we have a convex polygonal domain Ω with a fine mesh of triangles or tetrahedra

(with maximum diameter h). Let V be the set of piecewise linear finite elements on the fine

mesh. A diagram of the degrees of freedom of V is shown for a sample domain in Figure 2.1.

Suppose k is a symmetric, uniformly positive definite matrix.1 Let A : V → V
∗

be

the operator defined by 〈Au, v〉 = (k∇u,∇v)L2 for all u, v ∈ V , and let f ∈ V
∗

represent

source, gravity, and boundary data.2 We will refer to k as the “permeability”, but the k in

our equation is only proportional to permeability; other factors (such as viscosity) affect this

term. We have changed another symbol as well: u here is the “unknown”; it corresponds

to pressure.

Our goal is to solve the problem Au = f . As mentioned in the introduction, this

problem is challenging because the permeability k comes to us at high resolution (small h),

and because the permeability has high contrasts on short scales (the ratio of the maximum

permeability kmax to minimum permeabiltiy kmin is large). The high resolution and contrast

result in an ill-conditioned A: the condition number of A grows as O(kmax/kmin h−2). The

problem cannot simply be coarsened as details on all scales are important to correct flow

1We conjecture that the permeability k need follow a sort of super diagonal dominance for the results on
insensitivity to jump size (a diagonal k will do, for instance), but such diagonal dominance is demonstrably
unnecessary for the convergence results.

2Discretizing a time-dependent Darcy flow problem where the medium is slightly compressible results
in an additional term (cu, v)L2 to the bilinear form defining A. The coefficient c is non-negative; the term
simply adds to the diagonal of A and otherwise does not affect our analysis.

7



Figure 2.1: A sample domain with multiscale degrees of freedom shown. Each open circle
represents a degree of freedom of V . The gray patch indicates the support for the degree of
freedom at its center. For simplicity, the domain is square, and the case ΓN = Γ is shown
so that there are degrees of freedom all along the boundary of the domain.
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prediction or, rather, prediction of quantities that depend on the flow such as injection

and production rates, breakthrough times of injected fluids, and total production. See, for

instance, the introductions in [30, 1].

2.2 Coarsening the problem

We assume that a coarsened mesh is given to us.3 We require, though, that the coarse mesh

is formed by picking coarse elements as patches of fine elements, that is, by agglomerating

fine elements into coarse ones (with maximum diameter H). Some rules governing this

agglomeration are necessary to make our proposed algorithms computationally feasible; for

instance, picking simply connected coarse patches would be wise. However, the following

analysis shows no such rules are necessary.

The space V has a degree of freedom at each vertex of the mesh. We will segregate

these degrees of freedom into groups, and construct from these groups a multiscale basis

whose span approximates V . In defining this basis we follow the lead of the of the variational

multiscale finite element method. Notable differences include the use of edge and face

bubbles in the coarse basis (and not just corners), and the parameterization of the edge

and face bubbles as macro elements. (To step ahead for a moment, see Figure 2.2 for a 2-D

example.)

Let δV be the subspace of V defined by the span of shape functions whose support

lies in a single coarse patch. This space δV might be described as subgrid bubbles or interior

bubbles.

Suppose the intersection (in 2-D) of three or more coarse patches is a single vertex;

call that vertex a corner. Also consider as corners those vertices that are the intersection of

two or more coarse patches and ΓN , the part of ∂Ω on which Neumann boundary conditions

are imposed. (In 3-D, we want the intersection of four or more patches, or the intersection

of three or more and the boundary.) Consider a shape function that is one at a corner

and has a support contained in the union of coarse patches abutting the corner. Fixing a

single shape for each corner, let Vcorner be the subspace of V that is the span of such shape

functions.

Suppose the intersection (in 2-D) of two coarse patches is a curve on which more

than two vertices lie; call that curve a coarse edge ec. (Note that we want more than two

vertices — otherwise there are no vertices interior to the edge, and Vcorner covers the degrees

of freedom on the edge.) We also consider those edges that are the intersection of a coarse

patch and ΓN . (In 3-D, we want the intersection of three or more patches, or the intersection

3Any of a number of procedures are available in this regard. For instance, there is the smoothed aggre-
gation of algebraic multigrid [12] and domain decomposition methods [73].

9



of two or more and the boundary.) Consider a shape function that is zero at both ends of

the edge, possibly non-zero in the interior of the edge, and has a support contained in the

union of coarse patches abutting the edge. Record the heights of the shape function vβec

along coarse edge ec in a vector βec . Require that the heights of the shape function in the

interior of the coarse patches that abut ec depend linearly on βec . That is, fix a one-to-one

linear map Vec : βec → vβec
for each coarse edge4; note that setting all interior nodes to zero

will do. Let Vβ,edge be the subspace of V that is the span of such shape functions, “edge

bubbles.”

In 3-D, we will also need face bubbles. Call the (non-empty) intersection of two

coarse patches (or a coarse patch and ΓN ) a coarse face fc. Defining face bubble shape

functions in a manner similar to those for edge bubbles gives the space Vβ,face. Let β be the

vector whose entries list the entries of all βec and βfc . (For simplicity, throughout the rest

of this document ec will represent either a coarse edge or face as appropriate.)

Finally, let Vβ = δV ⊕ Vβ,face ⊕ Vβ,edge ⊕ Vcorner. See Figure 2.2 for a 2-D example of

a coarsened mesh and the associated degrees of freedom for Vβ .

Note V is the union over all β of Vβ . For later convenience, define V0 = δV ⊕Vcorner;

that is, this is the space Vβ with β ≡ 0. Also define Vedge as the union over all β of Vβ,edge,

and Vface as the union over all β of Vβ,face. Another way to define Vedge is as the direct sum

of the ranges of the Vec over all ec (with Vface defined similarly).

Define the projection Pe that extracts edge and face information. In terms of the

direct sum V = δV ⊕ Vface ⊕ Vedge ⊕ Vcorner, if u = δu + uface + uedge + ucorner, then

Peu = uface + uedge. In general, Pe is not an orthogonal projection; usually δV ⊕ Vcorner is

not orthogonal to Vface ⊕ Vedge. In the special case where basis shapes of Vβ have minimal

support — where the basis shapes for δV and Vcorner come from the nodal basis for V , and

the basis shapes for Vβ,edge and Vβ,face are linear combinations of as small as number as

possible of nodal basis shapes from V — then Pe is an orthogonal projection (considering

elements of V as vectors). We will briefly return to this idea of a change of basis in

Section 4.4.

Let Iβ : Vβ → V be the natural inclusion.5 Considering Iβ as a matrix, a quick

lemma is it is of full rank. For the nodal bases, there is a non-zero entry in each column of

Iβ corresponding to a degree of freedom of Vβ,face⊕Vβ,edge⊕Vcorner that appears in no other

column of Iβ . If βec or βfc is identically zero on an edge or face, then the corresponding

column of Iβ simply is not present.

We use the inclusion Iβ to construct a coarsened version of our problem. Let the

4For convenience, we will use Vec
interchangeably to denote the map and its range.

5For a purely algebraic interpretation of our algorithm, one would instead pick any one-to-one map Iβ
from a chosen coarse space Vβ to the underlying fine space V .
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Figure 2.2: A sample coarsened domain with multiscale degrees of freedom shown. Open
circles are subgrid degrees of freedom from δV . Filled red circles are corner degrees of
freedom from Vcorner. Extended green ovals are edge degrees of freedom from Vβ,edge; stars
represent degrees of freedom from the shape parameters β. The green patch represents the
support for the edge in the middle of the patch; likewise, the red patch is for the corner’s
support. For simplicity, the case ΓN = Γ is shown so that there are degrees of freedom all
along the boundary of the domain.
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matrix Aβ be

Aβ = IT
β AIβ

and the vector fβ be

fβ = IT
β f.

Then

Aβuβ = fβ

is the coarsened or multiscale problem for a given β. The matrix Aβ is symmetric positive

definite because Iβ is of full rank and A is symmetric positive definite. The coarsened

problem results from the same Galerkin procedure restricted to the subspace Vβ ⊂ V .6

Even though the multiscale problem has nearly as many degrees of freedom as the

fine problem, it is easier to solve. The support of subgrid degrees of freedom from δV in

one coarse patch does not overlap that of others in another coarse patch. The support does,

of course, overlap that of some coarse degrees of freedom (those of some faces, edges, and

corners). We can solve for the influence of a coarse degree of freedom on its support’s coarse

patches, that is, form the Schur complement of the subgrid into the coarse. In doing so,

we must solve a collection of subgrid problems along with the coarse one. However, each

subgrid problem is independent; we effectively decompose the whole system into pieces each

of which has fewer degrees of freedom (lower resolution). Also, each coarse patch will almost

surely have less heterogeneity than the whole domain, and the coarse-scale problem is an

“averaged” version of the fine one so has less hetereogeneity, too.

2.3 Some important projections

We will make use of a number of projections onto Vβ and related spaces. Define Zβ as

Zβ = I − IβA−1
β IT

β A.

This is the A-orthogonal projection onto V ⊥A

β , and its complement I−Zβ is the A-orthogonal

projection onto Vβ . Its transpose ZT
β = I − AIβA−1

β IT
β is its conjugate Zβ = A−1ZT

β A. The

transpose is the A−1-orthogonal projection onto V ⊥
β , and its complement I − ZT

β is the

A−1-orthogonal projection onto AVβ . These relationships are diagrammed in Figure 2.3.

We make an error in solving the coarsened problem versus the original problem. Let

eβ be the error vector

eβ = u− Iβuβ = Zβu.

6Keeping in mind the purely algebraic approach, technically it is the range of Iβ that is the subset, that
is, IβVβ ⊂ V . If Iβ is not the natural inclusion, we will sometimes abuse the notation for convenience, and
we note it here to avoid confusion.
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Figure 2.3: Relationships among subsets of V induced by the projections Zβ and its relatives.

For every β (including 0), Zβ is an A-orthogonal projection, and ZT
β is an A−1-orthogonal

projection. Because of the nested spaces V0 ⊂ Vβ , we have ZβZ0 = Zβ . The bottom diagram

is a vertical slice through the top two diagrams along Vβ ; similar diagrams hold for the other
spaces.
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As a means for measuring sizes of errors, define ‖v‖A =
(

vTAv
)1/2

for v ∈ V . The residual

for the coarsened problem is

rβ = f −AIβuβ = ZT
β f,

and the error and residual are related through Aeβ = rβ . That eβ ∈ V ⊥A

β can be written

as IT
β Aeβ = 0, and that rβ ∈ V ⊥

β as IT
β rβ = 0. These relationships also can be expressed

through ZβIβ = 0 and/or IT
β AZβ = 0.

As noted in the first section, any given coarsened space Vβ may give a poor approx-

imation (and a large eβ). The hope lies in that the union over all β of the Vβ is V ; that is,

we hope we can adjust β to reduce the error — to find a β so that u lies close to Vβ . In the

next chapters we lay out algorithms that achieve the goal of reducing the error as much as

one desires.
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Chapter 3

A naive application of Newton’s

method

We want an algorithm to find a β so that eβ = 0. That is, we want to find a root of the error

eβ as a function of the shape parameters β. Newton’s method is a root-finding algorithm;

we can use it here. Its employ is non-trivial: eβ is a vector rational function of β.

In this chapter we describe a straight-forward application of Newton’s method and

the implications of this approach. Although we do not believe this is the best approach,

it illuminates a path to a better method, and with further research it may yet be a viable

method of its own.

The first section is a teaser on how to apply our idea to a toy 3× 3 linear system; it

shows our idea in action in a simple context. In the second section we describe the algorithm

as applied to the finite element discretization Darcy flow of chapter 2, and follow that with

a short discussion of convergence and a section on the computational infeasibility of the

algorithm. Next is a section on modifying the algorithm to make it more practical. A last

section describes a Jacobi-like algorithm. It is included here for completeness to use as a

basis of comparison in the examples of Chapter 5.

3.1 A toy example in R
3

Solving linear systems requires nonlinear operations (division), but a direct application of

Newton’s method results in a one-step procedure. That is, suppose we wish to solve the

linear system Au = f , and we use the residual

F (u) = f −Au
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as our objective function for Newton’s method; the root of this function is the solution we

seek. The Jacobian of the objective is

F ′(u) = −A

so that the Newton step at iteration i is

ui+1 = ui − (−A)−1(f −Aui) = u,

the exact solution. This fast convergence — one iteration — occurs because to solve the

linear system Au = f , we must solve the linear system e = A−1r at each iteration. This

direct application of Newton’s method tells us nothing new; we have to find a different way

to look at the problem.

Writing the unknown u using polar coordinates offers us that different view. We

introduce the 3× 3 linear system

A u = f







10 −6 4

−6 17 0

4 0 9













x

y

z






=







10

5

−1







to provide some simple context. If we write the entries of the unknown u using polar

coordinates, we get

u = Uσρ







x

y

z






=







cos θ sinφ

sin θ sinφ

cos φ






ρ

where the magnitude ρ in common to each entry has been factored out. The angles θ and φ,

abbreviated in the list σ = (θ, φ), indirectly tell us the shape/direction Uσ of the unknown.

Again using the residual as our objection function, we apply Newton’s method to

find a zero. We could write the residual as a function of both shape and magnitude,

r(σ, ρ) = f −AUσρ.

This would leave Newton’s method to optimize on all the parameters; instead, we will split

the problem into two pieces, one linear and one nonlinear.

We compute the magnitude as a function of the shape: for a given shape we solve a
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coarse problem for the “best” magnitude in the energy norm that comes from applying the

Galerkin procedure
(

UT
σ AUσ

)

ρ = UT
σ f. (3.1)

The system UT
σ AUσ is a 1× 1 system; it is easier to solve than the original 3× 3 system.

For the nonlinear problem, we write the residual as a function of the shape alone,

r(σ) = f −AUσρ,

where ρ is determined by (3.1). This is an overdetermined system. The collection of shapes

σ can be parameterized with two degrees of freedom (the angles θ and φ), but the residual

has three components. The collection of residuals over all shapes is a surface (an ellipsoid)

in R
3 so the Jacobian is always singular.

Applying Newton’s method to finding a zero of the residual gives the algorithm:

1. Pick a shape σ;

2. Solve the coarsened problem
(

UT
σ AUσ

)

ρ = UT
σ f

for the magnitude ρ;

3. Calculate the objective/residual r(σ) = f −AUσρ;

4. Calculate Jacobian r′(σ);

5. Compute the Newton step

δσ = −
(

r′
)†

r;

6. Update the shape σ:

σ ← σ + δσ;

7. And repeat until the residual is small.

The pseudoinverse (†) is used because, as noted above, the Jacobian is singular.

3.2 An algorithm

In parallel to the 3× 3 system above, applying Newton’s method to finding a zero of eβ in

our full problem gives the algorithm:

1. Pick a β and solve the multiscale problem Aβuβ = fβ ;

2. Calculate the fine-scale error eβ = u− Iβuβ ;
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3. Compute the Newton step δβ = −(e′β)†eβ ;

4. Update β ← β + δβ; and

5. Repeat until the error is small.

One can also use the residual rβ in a similar manner:

1. Pick a β and solve the multiscale problem Aβuβ = fβ ;

2. Calculate the fine-scale residual rβ = f −AIβuβ ;

3. Compute the Newton step δβ = −(r′β)†rβ ;

4. Update β ← β + δβ; and

5. Repeat until the residual is small.

The steps taken by the error formulation are exactly the same as those taken by the residual

formulation since Newton’s method is affine invariant (affine covariant).1

Two basic questions about the algorithm we can answer right away are: Is there

a root for Newton’s method to find? If Newton’s method finds a root, does this give us

the desired solution to the original problem? Fortunately, the answer to both questions is

“yes”. A root means that the error is zero eβ = 0 so that uβ = u; a root means that the

residual is zero with same effect (A is non-singular and Ae = r). Also, there is a β
∗

for

which eβ∗ = 0. For instance, pick β
∗
ec = Peu|ec ; then u ∈ Vβ

∗ so that eβ∗ = Zβ
∗u = 0. Note

that β
∗

is not unique; see below.

3.3 Convergence

We would like to know under what circumstances Newton’s method converges and, if it

converges, how fast it converges. We begin by examining how the shape parameters β

affect the error eβ .

First, the error does not depend on the scale of β. The shapes β act as a direction and

their magnitude is unimportant so β is (almost) contractible: for a non-zero C, the shapes

β and Cβ produce the same error eβ = eCβ because Vβ = VCβ . We can even go further and

scale β edge-by-edge by a collection of non-zero Cec , one per coarse edge. Because Newton’s

method is affine contravariant, the size of the step δβ is proportional to the size of β. That

is, the scale of β on a given edge does not interfere with step selection. However, there

is a price to be paid. The size-redundancy in the shape parameters means the problem

is over-determined; for this reason, we use the pseudo-inverse and not the inverse in the

1See, for example, [27] for an exposition on affine invariance including affine covariance and contravariance,
among others
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above algorithms. There is a further reason the problem is overdetermined: the error is

A-orthogonal to Vβ . We have IT
β Aeβ = IT

β rβ = 0. There is a small upside, though: the root

β
∗

can be specified in many different ways; that is, it is easier to find one root when there

are many.

Beyond the two issues of non-uniqueness of β mentioned above, there are almost

always no others. We use the phrase “almost always” to refer to u and not β here. An easy

lemma is the following:

Lemma 3.3.1. Given a β such that Iβuβ = u, if there is an ec such that Peu|ec = 0, then

there are many shapes γ with Iγuγ = u.

Proof. Construct γ with γe′c = βe′c for all e′c 6= ec, but allow γec to be anything desired.

Then eγ = 0 just as eβ = 0 because u ∈ Vγ just as u ∈ Vβ .

Although this makes analysis of the naive Newton’s method more difficult, compu-

tationally this is a happy situation as it means a solution is easier to find.

Our objective function, the error eβ , is well-defined for every shape β. However, it is

only continuous almost everywhere (in the usual Euclidean norm).2 In fact, eβ is a rational

function of the entries of β; the inclusion Iβ is linear in β, the matrix Aβ is quadratic, and

its inverse A−1
β is rational. Also, eβ is bounded:

‖eβ‖ = ‖Zβu‖ ≤ ‖Zβ‖‖u‖ = ‖u‖.

There are essential discontinuities in eβ but only at those β where there is an ec such that

βec = 0 — there is a change in rank of Iβ . Because eβ is rational, it is also differentiable

(even analytic) almost everywhere.

Because of the smoothness of eβ , it is easy to see that if β starts sufficiently close to β
∗
,

and β
∗

is not at a discontinuity of eβ , then the algorithm provides quadratic convergence.

That is, since the error eβ is analytic almost everywhere, it almost surely satisfies the

hypotheses of the Newton–Kantorovich [49, 50, 51] or the Newton–Mysovskikh [62, 63]

theorem (see also [52, 67, 24, 27]) in some neighborhood of β
∗

using appropriate quotient

spaces. The Jacobian e′β is singular because of the effect of V0 and the (near) contractibility

of β. We could also attack this directly as an overdetermined root-finding problem as in [23].

2There are other natural norms on the shape parameters. For instance, one can describe equivalence
classes [β] by the errors they generate: two shape parameters are equivalent if they produce the same error.
A distance metric is given by

d([β], [γ]) = ‖eβ − eγ‖A = ‖(Zβ − Zγ)u‖A ≤ ‖Zβ − Zγ‖A‖u‖A = ‖u‖Ad(Vβ , Vγ).

This metric has a number of properties such as eβ is trivially uniformly continuous as a function of β.
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We said that if β starts sufficiently close to β
∗
, then we get convergence to the

solution. Just how close is “close”, on the other hand, has been difficult to see; how it

depends on the problem parameters such as h, k, and u is unknown. Whether or not

global convergence can be had via damping or line searches or trust regions is another open

question; see some of the results in Section 3.5 below for some discussion.

The algorithm has quadratic convergence, but this is only an asymptotic rate. The

pre-asymptotic convergence rate, however, is unknown. It can be at least as slow as linear;

for instance, see the numerical example in Figure 5.2 in Section 5. Also, the convergence is

not guaranteed to be monotone far from the root; in this case, sufficient damping3 would

guarantee monotonicity as the Newton step is guaranteed to be a descent direction for any

positive definite quadratic form applied to the objective function (the error eβ).

Consider the level set function F (β) = 1
2‖eβ‖2A = 1

2eT
βAeβ . An alternative view of our

algorithm is that we minimize F (β). Using Newton’s method to carry out the minimization

gives the same steps as zeroing eβ . Likewise, minimizing the square of the A−1-norm of rβ
gives the same steps. Even further, since Newton’s method is affine invariant, minimizing

any level set function FM (β) = 1
2eT

β Meβ will do (where M is symmetric positive definite). In

particular, with the identity we minimize the ordinary l2 norm. Also, every norm on finite

dimensional spaces is equivalent, so we are guaranteed asymptotic quadratic convergence

in all of them. Further, the Newton direction δβ is special in that it is a descent direction

for any of these objective functions FM (it can be defined that way).

3.4 Computational infeasibility

At each step, we need to solve two linear systems. There is a multiscale solve for uβ given

β. (If a direct solver is used for the subgrid, these problems need be solved only once —

subsequent steps use the same matrix but with different right-hand sides; then only a coarse

solve is necessary for each Newton step.) This solve is much less expensive than for the

original problem as we have reduced the number of unknowns by the order of ηD where

η = H/h and D is the space dimension (two or three).

Once we have uβ , we need a residual evaluation followed by a Newton step solve.

The Jacobian has a dimension of only the number of edge shape parameters. This, too, is

much less expensive as the number of unknowns involved is from a slice of dimension one

smaller (of order ∂Ω versus Ω).

Since we have separated the original large problem into two smaller ones, solvers

3That is, use the update β ← β + ω δβ for some 0 < ω < 1 instead of β ← β + δβ.
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work faster. The catch is the operation count for computing the Jacobian r′β . Since

rβ = f −AIβuβ = ZT
β f,

then

r′β = −A(I ′βuβ + Iβu′
β)

by the product rule. We also have that

Aβuβ = fβ and Aβ = IT
β AIβ

so

A′
βuβ + Aβu′

β = (I ′β)T f and A′
β = (I ′β)TAIβ + IT

β AI ′β .

Then

Aβu′
β = (I ′β)T (f −AIβuβ)− IT

β AI ′βuβ

= (I ′β)T rβ − IT
β AI ′βuβ ,

and finally, recalling that Zβ = I − IβA−1
β IT

β A,

r′β = −A(ZβI ′βuβ + IβA−1
β (I ′β)T rβ).

A straight-forward computation of r′β (or e′β = A−1r′β) requires a number of coarse

solves: each application of Zβ to a column of I ′βuβ , and the more explicit A−1
β (I ′β)T rβ . Not

counting zero right-hand sides, there are as many right-hand sides as twice the number of

edge degrees of freedom (length of β). This is, essentially, like forming the Schur complement

of the degrees of freedom in Vβ into their complement in V . Along with the other solves

required by the algorithm, this is as expensive as solving the original problem Au = f itself.

3.5 Practical application of Newton’s method

Two severe problems confront us in devising a practical implementation of the above al-

gorithm: the expense of Jacobian evaluation, and ensuring convergence from any starting

shape. We make some comments on each problem; some obvious remedies do not seem to

alleviate the situation. Lastly, we mention possible termination criteria.
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Jacobian approximation

We do not need the Jacobian r′β in and of itself; we only need to be able to solve the sys-

tem (r′β)†rβ for the Newton step. Rather than solving the system directly, we could use an

iterative solver like GMRES. This only requires being able to compute matrix vector prod-

ucts r′βv for various vectors v. These products, in turn, can be calculated using automatic

differentiation or approximated using finite differences. (The Jacobian times a vector is a

scaled directional derivative.) What impact this further approximation has on convergence

is unknown (both the rate and the domain of attraction of the solution). Also, how to set

the tolerances for GMRES and finite differences is not clear. The speed performance is also

impacted as each directional derivative requires an objective function (eβ or rβ) evaluation.

Alternatively, we could use a secant method such as Broyden’s method to avoid com-

puting the Jacobian. Of course, one needs to decide what to use as the initial approximation

to the Jacobian. Finite differences or automatic differentiation could be used to calculate

an initial Jacobian, but as noted above, this would be prohibitively expensive without fur-

ther approximations. More simply, one could start with the identity as the initial Jacobian;

aside from universal (mindless) applicability, the identity is easy to invert. Broyden’s “bad”

update allows us to (at each step) compute a rank-one update to this inverse. In a similar

vein, the identity is easy to factorize; with Broyden’s “good” update one could compute a

rank-one update to the factorization of the approximate Jacobian. As for the convergence of

Broyden’s method, one need only prove that the approximate Jacobian undergoes bounded

deterioration iteration by iteration; how to approach this problem is unknown.

Both of the above strategies have been tried with some success. Further research is

necessary to see if they are viable methods.

Perhaps instead one could be more crafty in the computation of r′β . For instance,

to a fair approximation, a column of r′β has only some “large” non-zeros entries. If the

degree of freedom to which the column corresponds sits on a particular coarse edge, then

the “large” non-zero entries correspond to degrees of freedom in the coarse patch abutting

that edge. One can then cut Ω into non-overlapping coarse patches and compute several

columns at once (with a column per patch). By rejiggering patches, one can compute a few

more columns, and so on. (The above applies equally to finite differences and automatic

differentiation.)

“Global” convergence

Global convergence is the more important problem in that it regards the underlying exact

algorithm. If the exact algorithm does not work, then we cannot expect an approximation

to work (like with the approximate Jacobian above).
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At first blush, it looks like we do not necessarily need global convergence in the

sense of convergence from an arbitrary initial guess for β. We already have a good initial

guess from ordinary multiscale elements (with their attendant error estimates and proven

practical value); we need only converge from there. This initial guess can be improved

further using any method that improves on multiscale elements; for instance, “Norwegian”

or “Scandinavian” elements [1]. Unfortunately, some “real world” examples have shown that

this is just not good enough to always get convergence with the full Newton steps. Thus it

would seem our “good” initial guess cannot be guaranteed to be (uniformly) “close” in the

sense of the Newton–Kantorovich or Newton–Mysovskikh theorems’ requirements; that is,

an additional scheme is necessary to ensure global convergence.

There are a number of schemes one can choose from. For instance, there are line-

search and trust-region methods. Good reviews can be found in the textbooks [24, 54].

We have tested a scheme first proposed by Deuflhard in [25, 26] and coded in [65] and [27,

Section 3.3]. See the examples in Section 5 for some sample results.

One choice that is required for Deuflhard’s method is the size of the initial damping

ω0 (the damping for the first step). The algorithm can sometimes detect and recover from

a poor choice, but cannot avoid a situation where this damping is required to be small (for

“highly nonlinear” problems). If the initial damping is small, it can take many iterations

before the damping can be reduced so that convergence is quadratic (many iterations to

get close to the root β
∗
). Compare the left and right middle diagrams in Figure 5.2 for

instance. This difficulty is a feature of the underlying root-finding problem, and not just of

Deuflhard’s algorithm (whether or not the initial damping is specified or computed).

The initial damping appears sensitive to problem parameters. For instance, Fig-

ure 5.10 shows a clear trend in the size of the damping as the size of the jumps in the

permeability field is increased. The size of the initial damping gets smaller (the problem

gets more nonlinear) as the permeability gets more heterogeneous. Some open questions

are: is the damping ω proportional to the maximum eigenvalue of the gradient of the step

field? Does this mean that ω → 1 as we approach the solution β → β
∗
? Conversely, does

ω → 0 as we get far from β
∗
? Or as β0 → βzero, the equivalence class [0] of β’s that produce

the same (worst-size) error as β = 0? Also, would the damping ω being proportional to the

maximum eigenvalue of the gradient of the step field mean that ω0 ∝ kmax/kmin? What

is the relationship between ω0 and H/h? Does ω0 → 0 as H/h → ∞? What about when

H/h→ 1?

Finally, sufficient damping would lead to global convergence as the Newton direc-

tion is a descent direction for ‖eβ‖A. That is, the Newton path can only go down, and

there is a single minimum for the error eβ = 0 (with the only other critical point being

eβ = u). Whether or not an adaptive damping scheme can achieve the required damping
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automatically, though, is an open question.

As an alternative to damping, one could consider combining Newton’s method with

a linear, monotone convergent method. For instance, Newton’s method is special because

it generates a descent direction for any of the level set functions FM . One could use the

gradient of one of these to get started (assuming it is damped/scaled sufficiently to guarantee

global convergence). Then one could use Newton’s method to polish it off. As a second

alternative, one could use conjugate gradients, multigrid, the linearized scheme (Section 3.6

below), or some other such method to get started, then use Newton’s method to polish it

off. Any of these has its problems, too, such as when to hand off between the two methods

(the initial method and Newton’s method).

Termination criteria

The algorithm never actually reaches the solution so we need a criterion for deciding when to

stop. As with other iterative methods, we can use a residual termination criterion. That is, if

the residual is smaller than some predetermined tolerance, or if the algorithm has reduced

the size of the residual by some predetermined scale, then we stop. However, Newton’s

method presents another, more natural, termination criterion. In Newton’s method, since

β converges quadratically to β
∗
, the step size ‖δβ‖ converges linearly to zero. The step δβ

is a proxy for the error β
∗−β; stopping when the step size is smaller than a predetermined

level results in the error itself being smaller than that level.

3.6 A Jacobi-like method

Jacobi’s method for solving Au = f estimates the error in a proposed solution û as D−1r

where D is the diagonal of A and r = f −Aû is the residual. One performs the update:

û← û + ωD−1r.

We can adopt this to update basis shapes indirectly by changing

Iβuβ ← Iβuβ + ωD−1rβ

and then extracting edge information

βec = PeIβuβ |ec .

This was more or less the original formulation of our method before we realized root

finding methods like Newton’s method were applicable. However, like the naive application
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of Newton’s method, this Jacobi-like method is probably not a practical one. There are the

same questions about the magnitude of damping for this scheme as for the naive Newton

scheme. Although it probably converges globally with sufficiently strong damping, the

method only obtains a linear convergence rate. It likely does not out-perform Jacobi’s

method itself.

We present it here for reference to use as a comparison in the chapter on practical

test examples.
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Chapter 4

A geometric method: constrained

Newton

The previous method suffered for two reasons. First, there is the seeming inherent difficulty

in computing the Jacobian. Second, there is the necessity of damping the Newton step

because of the highly non-linear problem we try to solve. In this chapter we lay out a

different algorithm that avoids the computation of the Jacobian through an application of

the chain rule. In doing so we also eliminate the second problem; there is a direct analogy

between two dynamical systems and the two algorithms: the first is stiff — requiring either

very short stepping via damping or implicit stepping — and the second not.

We begin with a geometric description of the collection of error vectors. Next we

show how the chain rule can be used to avoid the use of Jacobians; this introduces the need

for a projection onto the tangent space of the errors. Following that is a discussion of how

to compute this projection, and a section where we compute those points where Newton’s

method pauses (has a zero step). We then make explicit the analogy between Newton’s

method and a dynamical system before finally proving global, monotone, asymptotically

quadratic convergence of the method.

Last, we discuss modifications to make this algorithm practical. Some of these mod-

ifications do not impact our result; others may, but we do not know how. Since estimating

the error is an unavoidable step in our algorithm, we suggest employing the algorithm as

an accelerator, that is, as an outer iteration for another solver.

The last section is a summary of results and a list of conjectures on other notable

features of the algorithm.
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4.1 A geometric description of the collection of error vectors

The idea is that every error vector obeys the Galerkin orthogonality conditions, and every

vector that obeys the Galerkin orthogonality conditions is an error vector. The key for the

reverse direction lies in picking a β that generates a given error. For this we can exploit the

definition of the error: eβ = u − Iβuβ . Flipping this around gives Iβuβ = u − eβ , and from

the multiscale solution Iβuβ we can always back out a β that generates it by examining its

shape along coarse edges.

First we introduce a couple of definitions for convenience.

Definition 4.1.1. Let E be the collection of all error vectors: E = {eβ ∀β}.

Definition 4.1.2. Let Pecbe the operation that takes a vector v ∈ V , extracts edge informa-

tion Pev, restricts attention to a given coarse edge (Pev)
∣

∣

ec
, and extends the result by zero

to the rest of the degrees of freedom.

Note that Pec is the composition of linear operators so it is linear, too. It is also

a projection. Using this edge-information extracting projection, we can write a purely

geometric description of the collection of error vectors E .

Theorem 4.1.3. The collection of all error vectors E is the intersection of V ⊥A

0 and

{e | eTAPec(u− e) = 0 ∀ec}.

Proof. (⊂) For every β we have eβ ∈ V ⊥A

β by the Galerkin property. In particular, Iβuβ =

u− eβ ∈ Vβ and Pec(u− eβ) ∈ Vβ for all ec. Thus eT
βAPec(u− eβ) = 0 for all ec.

Also, V0 ⊂ Vβ so V ⊥A

β ⊂ V ⊥A

0 . Since eβ ∈ V ⊥A

β then eβ ∈ V ⊥A

0 . Thus E is a subset

of V ⊥A

0 ∩ {e | eTAPec(u− e) = 0 ∀ec}.
(⊃) The converse is a little trickier. Pick any vector e ∈ V ⊥A

0 such that eTAPec(u−
e) = 0 for every ec. Construct β by setting βec = Pe(u− e)|ec on coarse edges ec. We claim

that e = eβ .

The basis shape vβec
can be written as vβec

= v0+Pec(u−e) for some v0 ∈ V0 because

βec = Pe(u− e)|ec . However, e ⊥A V0 and e ⊥A Pec(u− e) by assumption so e ⊥A vβec
. The

edge ec was arbitrary so e ⊥A vβec
for every ec. Since e is also A-orthogonal to V0, then e

is A-orthogonal to all of Vβ . That is, e is in V ⊥A

β .

That e ∈ V ⊥A

β means Zβe = e. Since u− e ∈ Vβ by construction, we get

eβ = Zβu = Zβ(u− e + e) = Zβ(u− e) + Zβe = 0 + e = e.

Thus the claim e = eβ is true, and e ∈ E .

A few quick remarks are in order.
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The collection of all error vectors E is a subset (and a submanifold) of the ellipsoid

{e | eTAe = uTAe}. (Or, rather, the intersection of this ellipsoid and V ⊥A

0 .) That is, the

A-orthogonality of the projection Zβ means ZT
β AZβ = AZβ which gives eT

βAeβ = uTAeβ by

hitting both sides with u. We will make use of this (smooth) embedding when constructing

approximations to parts of our algorithm. Note that this ellipsoid is only of dimension one

smaller than the ambient space V ⊥A

0 . It also has a simple geometry: the volume it encloses

is convex and simply connected.

The collection of residuals follows the same form. The residual obeys Aeβ = rβ so

the collection of residual vectors is just a sheared, scaled, and/or rotated version of the

error vectors. The collection of residuals shares the geometry of E (is diffeomorphic to and

affine congruent to E).
We have managed a purely geometric description of the collection of error vectors E .

It makes no reference to the shape parameters β, the spaces Vβ , or the multiscale problem

Aβuβ = fβ and its solution uβ . We have written an analogue of the Galerkin orthogonality

conditions through the edge-information extraction operation Pec . We will use geometry to

help forge a new algorithm.

4.2 The chain rule and the projection onto the tangent space

Instead of using Newton’s method to calculate how the shape parameters β change,

δβ = −(e′β)†eβ ,

we can calculate what effect this step will have on the error. That is,

δeβ = e′β δβ so that

δeβ = −(e′β)(e′β)†eβ .

But the quantity (e′β)(e′β)† we recognize as the orthogonal projection Ptan onto the tangent

space of the manifold of the collection of eβ ; we can write δeβ = −Ptaneβ . The above

calculations can only be defined almost everywhere because they involved e′β . However, we

know that the error vectors form a geometric shape with a smoothly varying tangent space.

Thus one can instead define

δeβ = −Ptaneβ

which is now continuous (and otherwise smooth) everywhere. Note that we can also map

this back to β space to obtain a δβ that is well-defined everywhere too. (Although δβ could

be well-defined everywhere — even at β = 0 — it is still only continuous among equivalence
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classes; it has essential discontinuities at some zero-measure subset of β.)

The tangent space and a choice of projections

In the following two subsections we will explore how one can compute the projection onto

the tangent space. We will focus on computing the tangent projection as the complement of

the normal projection, and will start with a simpler case — a problem with a single coarse

edge — after which we will treat the full problem. We will also discuss variants using the

residual in place of the error, and variants that use an A- or A−1-orthogonal projection.

Let N0 be the dimension of V0. Let Ne be the dimension of Vface ⊕ Vedge; this is

the length of β or the number of shape parameters. Let ne be the number of coarse edges.

Except in certain degenerate cases, the dimension of the tangent space is Ne − ne and that

of the normal space is N0 + ne. Thus it seems that by computing the tangent projection

as the complement of the normal, we are choosing to solve a harder problem.1 We do this

for two reasons. First, it is easier to characterize the tangent plane by its normals rather

than computing an independent set that spans the tangent plane. The columns of the

Jacobian e′β span the tangent space, but as we have already noted, computing the Jacobian

is impractical. Second, by a judicious choice of an oblique projection we will be able to

avoid reference to the subgrid V0. The normal projection will then be onto a space with a

dimension equal to the number of coarse edges — much smaller than before and now also

much smaller than the dimension of the tangent space.

A simple case: one coarse edge

In the case where there is but one coarse edge, we can rewrite the description of the collection

of error vectors without reference to Pec :

{eβ | eT
βA(u− eβ) = 0} ∩ V ⊥A

0 .

Because there is only one ec, the action of Pec on (u− eβ) only serves to remove the effect

of V0 and not that of other edges. Since we already consider the intersection of the above

ellipsoid with V ⊥A

0 , the result is the same. In the same vein, the collection of residual

vectors can be written as:

{rβ | rT
β A−1(f − rβ) = 0} ∩ V ⊥

0 .

Rather than consider the tangent space (and the projection thereto), we will com-

1We are assuming that N0 ≫ Ne ≫ ne. That is, there are many more degrees of freedom in the interior
of coarse patches than on their boundary, and there are many more degrees of freedom on coarse edges than
there are edges.
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pute the projection onto the normal space. We can recover the tangent projection as the

complement of the normal projection. We do this because the normal space is readily

computable and (if we play our cards right) is of a smaller dimension.

The normal to {eβ | eT
βA(u− eβ) = 0} is the vector rβ − 1

2f :

(e + δe)TA(u− (e + δe)) = 0

eTA(u− e) + δeTA(u− e)− eTAδe− δeTAδe = 0

δeTA(u− 2e) = 0

δeT (f − 2r) = 0.

(4.1)

The span of the vector rβ − 1
2f with AV0 is the normal space. Likewise for the collection of

residuals, we have the span of eβ − 1
2u and V0.

As a quick review, if the columns of a matrix M are linearly independent and span

a space W , then M(MT M)−1MT is the orthogonal projection onto W . Of course, we need

not explicitly form such a matrix to calculate the effect of the projection of a vector, but

we do need to be able to solve systems of the sort MT Mx = y.

In the error case, a natural choice for the columns of M are the columns of AI0 along

with rβ − 1
2f . The matrix MT M represents a sparse system, but involves A2 along with a

dense row and column and so loses our special multiscale structure; it may be difficult to

solve. That is, this is not as easy as solving a coarsened/multiscale problem, and we would

like to avoid such a computation.

The situation is better for the residual formulation: the columns of M are the

columns of I0 along with eβ − 1
2u. Computing the effect of the projection requires solving a

coarse system if corner shapes overlap. If, on the other hand, corner shapes have minimal

support, then all the columns of M are columns of the identity matrix along with eβ − 1
2u,

and the projection is even easier to compute. Because of the ease in computing the tangent

projection for the residual formulation, we will keep this in mind. However, we still face

the difficulty of computing eβ − 1
2u in the first place. We would like to avoid this, too.

By changing perspective a little bit, we can always avoid the coarse solves needed

for the projection.2 The problem in the error case comes from the vector rβ − 1
2f not

being orthogonal to AV0; if it were, we could compute the projections separately. That is,

if we found a normal to {eβ | eT
βA(u − eβ) = 0} that lay in V ⊥A

0 (considered now as the

ambient space for E), we could simply compute the projection onto the normal space as the

projection onto this single vector.

This is indeed possible. A hint comes from the calculations for the normal in equa-

tion (4.1). The last line tells us rβ − 1
2f is normal to the tangent space, but the line just

2In this section, we will not attempt to avoid computing eβ −
1
2
u. This will be addressed later.
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above it tells us eβ − 1
2u is A-normal to the tangent space.3

We will need two insights to carry out our procedure. One insight is that the Moore–

Penrose pseudoinverse is not the only pseudoinverse available to us. We wanted to compute

the effect of (e′β)(e′β)†. As stated before, if we use the Moore–Penrose inverse (†), this is the

orthogonal projection onto the tangent space of the collection of error vectors (the range

of e′β). That is, for any matrix M the Moore–Penrose inverse has the property that MM †

is the orthogonal projection onto the range of M . We can define a new pseudoinverse (†A)

so that MM †A is the A-orthogonal projection onto the range of M (and keep the other

properties of the pseudoinverse the same). Using this new pseudoinverse, (e′β)(e′β)†A is the

A-orthogonal projection onto the tangent space of the collection of error vectors.

The Moore–Penrose inverse has another property that we will find useful later. For

a matrix M with full column rank:

x = M †b = argmin‖b−Mx‖.

We can instead define a pseudoinverse (†A) with the property that:

x = M †Ab = argmin ‖b−Mx‖A,

and again keep the other properties of the pseudoinverse the same. Fortunately, the two

definitions (projection-based and minimization-based) coincide; see Sections 2.6, 2.7, and

3.4 of [10]. One can relate the two pseudoinverses † and †A through the formula:

M †A =
(

A1/2M
)†

A1/2.

We can similarly define a third pseudoinverse (†A−1) with respect to ‖·‖A−1 and A−1-

orthogonal projections.

Our second insight comes by noting that eβ , the vector whose projection we desire,

already lies in V ⊥A

0 , a natural ambient space for the manifold of error vectors. If u did too,

then the normal vector eβ − 1
2u would lie in V ⊥A

0 (as would f and rβ − 1
2f lie in V ⊥

0 ). In

general, of course, u does not lie in V ⊥A

0 , but if we remove the components of u that are

A-orthogonal to V0, we will have as we wish. We can add an extra initialization step to our

algorithm to accomplish this. If we perform a multiscale computation with β = 0 and call

the result u0, then we can update u ← u − u0 and store u0 to be added back at the very

3The A-normal to E can be considered an affine normal [56, 64]. It is only an affine normal (there are
many others), but it is the natural one to an ellipsoidal surface (the “usual” normal to the sphere).

One could also call this the conjugate normal (in the spirit of conjugate gradients). The only parallel
though is in the concept that there is an alternative normal, one that uses the induced A-inner product
instead of the usual Euclidean one so in this context the term “conjugate normal” is a neologism.
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end of our computation. This initial step costs only a multiscale solve (which we assume is

inexpensive), and guarantees that u ∈ V ⊥A

0 . (At the same time we update f ← f − Au0

and get f ∈ V ⊥
0 .)4

To sum up and review so far we list some results. For the orthogonal projection, the

normals are

in the error case: columns of AI0 along with the vector rβ − 1
2f , and

in the residual case: columns of I0 along with the vector eβ − 1
2u.

For the A-orthogonal projection, the normals are

in the error case: columns of I0 along with the vector eβ − 1
2u.

For the A−1-orthogonal projection, the normals are

in the residual case: columns of AI0 along with the vector rβ − 1
2f .

By precomputing u0 and f0 we get to assume

u, eβ ∈ V ⊥A

0

f, rβ ∈ V ⊥
0 = (AV0)

⊥
A
−1

.

This does not help us compute the orthogonal projections in either the error or residual

case; that is, we do not have that eβ ∈ V ⊥
0 nor rβ ∈ V ⊥A

0 so that solving a system is still

necessary to compute the projection. However, it does help for the A-orthogonal and A−1-

orthogonal projections; we can get away with a matrix-vector multiply, a dot product, and

a division.

Taking V ⊥A

0 as the ambient space in the error case, the ellipsoid of error vectors is

of one dimension smaller than the ambient space. Now that we have identified a normal

vector to the ellipsoid, we can easily remove the orthogonal component in the direction of

the normal; this is the action of the A-orthogonal projection onto the tangent space.

Ptaneβ =

(

I −
(eβ − 1

2u)(eβ − 1
2u)TA

(eβ − 1
2u)TA(eβ − 1

2u)

)

eβ

The tangent projection can be computed with a matrix-vector multiply along with dot

products and vector scalings and additions; the linear system solve is replaced with a simple

4The vector rβ −
1
2
f generally will not be in V

⊥A

0 — it is in V ⊥

0 — unless V0 is empty, that is, there is
no subgrid. This may be a useful case in a purely algebraic approach to the problem even if not useful here;
it allows one to avoid identifying a subgrid in a problem that does not naturally have one. See Chapter 7
for an example in a dense matrix, the Hilbert matrix.
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scalar division. However, this form seems to imply that we need to know both the error eβ
and the solution u. The need for u can be skirted; see Section 4.7 for a fix.

We can compute the tangent projection likewise for the residual case:

Ptanrβ =

(

I −
(rβ − 1

2f)(rβ − 1
2f)T A−1

(rβ − 1
2f)T A−1(rβ − 1

2f)

)

rβ

again only using dot products and vector operations along with a matrix-vector multiply

(assuming we can compute the effect of applying A−1).

Next we will consider the general case, but keep the above discussion in mind for

the approximation of the general case.

The general case: many edges

We now need a collection of independent normals, one per edge. Recalling equation (4.1)

and theorem 4.1.3, we can compute the normals in the case of many edges.

A normal to eTAPec(u− e) = 0 can be had from the following:

(e + δe)TAPec(u− (e + δe)) = 0

eTAPec(u− e) + δeTAPec(u− e)− eTAPecδe− δeTAPecδe = 0

δeT (APec(u− e)− P T
ec

Ae) = 0.

(4.2)

This gives APec(u−e)−P T
ec

Ae as a normal, one per edge. The span of these along with AV0

is the normal space. (We will see in section 4.4 that the vectors APec(u − e) − P T
ec

Ae are

indeed independent.) As in the single edge case, we will also be interested in the A-normal

space. This space is the span of the Pec(u − e) − P
∗
ece along with V0 (where we use P

∗
ec to

denote the adjoint of Pec in the A-inner product: P
∗
ec = A−1P T

ec
A).

Let N be a matrix whose columns are those of AI0 along with the vectors APec(u−
e) − P T

ec
Ae. Let NA be a matrix whose columns are those of I0 along with the vectors

Pec(u− e)− P
∗
ece. Writing out the form for the normal projections gives

N
(

NT N
)−1

NT and NA

(

NT
AANA

)−1
NT

AA

for the normals and A-normals respectively.

Because Pec is not an (A-)orthogonal projection, the situation is worse than that

for a single edge. We cannot avoid a coarse solve where the number of unknowns equals

the number of coarse edges plus dimV0 — not by considering the residual nor the error

formulation and not by considering orthogonality nor A/A−1-orthogonality. (Keep this

conundrum in mind for the later section on computing fixed points of Newton.)
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If we had orthogonality between AV0 and the normals to the shapes described by the

Galerkin conditions (or A-orthogonality between V0 and the A-normals), then at least it is

smaller than the size of the coarse system in the multiscale solve — there are no corners;

it is also much smaller than the system solved in the naive Newton ((r′β)†rβ). However, it

is still dense. On the other hand, it does have a special structure that we might be able to

exploit. There is weak coupling between the edges, and the algebraic form Pec + P
∗
ec might

yield fruit.5

Though this problem would make computations more difficult, in practice we will

avoid this situation through a judicious approximation: the collection of error vectors E lies

in the ellipsoid eTA(u − e) = 0 which has but a single A-normal that already lies in V ⊥A

0 .

That is, we go back to the single-edge case. See section 4.7.

4.3 An algorithm

This brings us to a new algorithm. Applying Newton’s method to finding a zero of eβ is

equivalent to finding a zero of f(e) = e with the constraints e ∈ E and e ∈ V ⊥A

0 . Thus we

compute:

0. Calculate and store the multiscale solution u0 with β = 0. Update the right-hand-side

data f ← f −AI0u0.

1. Pick a β and solve the multiscale problem Aβuβ = fβ .

2. Calculate the fine-scale error eβ = u− Iβuβ .

3. Compute the effect of the Newton step on the error δeβ = −Ptaneβ

4. Update the error eβ ← exp(eβ , δeβ).

5. Infer the updated β by extracting the edge information from Iβuβ = u− eβ by setting

βec = PecIβuβ

∣

∣

ec
;

6. Return to step (1) with the new β and repeat until the error is small; and

7. Construct the approximate solution u ≈ Iβuβ + I0u0.

The exponential map exp(p, d) follows the geodesic of the manifold E from the point p in

the direction d for a distance ‖d‖. Several of the above steps are obviously computationally

infeasible. See Section 4.7 for a means of approximating these steps.

We will only consider the error formulation going forward. This is for two reasons:

the tangent projection is equally difficult to compute for both the collection of residuals and

5The systems could be dense for a dense A if we were applying our solver in a pure algebraic fashion. If
Iβ is chosen so that there is no subgrid, then V ⊥

0 = V
⊥A

0 and only a coarse-system sized solve is needed.
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the collection of errors, and we cannot impute the shape parameters β from the residual rβ
like we can for the error eβ (without computing or otherwise estimating eβ = A−1rβ).

In the following sections, we assume without loss of generality that u ∈ V ⊥A

0 . Step

(0) in the algorithm (a throwaway multiscale computation) takes care of this.

As a minor remark, unconstrained Newton’s method takes one step: δe = −e. The

same goes for finding a root of g(e) = Ae, and for minimizing F = 1
2eT e or G = 1

2eTAe =
1
2rTA−1r. However, subjecting any of the four to the constraints gives our method.

4.4 Places where the Newton step is zero

In this section, we carefully examine how we extract edge shapes. We used Pe and Pec in

our geometric description of the collection of error vectors E . We also used edge information

extraction to calculate normals to E and so, indirectly, Ptaneβ . But where this is zero is

where the Newton step is zero. By a reparameterization of Vβ that gives the same subspace

(but different edge information projections), we will be able to explicitly calculate where

the Newton step is exactly zero.

We will only make use of the reparameterization of Vβ here and in Section 4.6. Of

the points we calculate in this section, we will not make use of precise knowledge of their

location; we only need know that there is a finite number of them (they are isolated points)

and that they involve a choice — one per edge. Of the edge projections we introduce in

this section, we only need know of their existence. Specifically, as a practical matter, we

will never need to compute the edge projections or the location of these points.

As a quick analogy to guide our thinking in this section, consider a sphere (of any

dimension). The only place where a transversal is normal to the tangent space (at either

end) is if it is zero or passes through the center. This is exactly the case of one coarse

edge (with A = I) where eβ = 0 and eβ = u are the only places where the Newton step is

zero. When we generalize to many edges (tensor product of spheres), there is a question

of whether we get a tensor product of points or whether the “poles” get swept out into

submanifolds of one dimension smaller (or something else entirely). It turns out that the

former is true: the collection of points where eβ lies in the normal space to the manifold of

eβ (that is, eβ is orthogonal to the tangent space of E at eβ — Te
β
E) is a finite set of isolated

points; there are 2#ec of them — a two-way choice per edge.

Motivation for reparameterization

The operators Pec have a number of useful properties that we have already found useful.

We summarize them here.
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1. Pec is a projection; its range is Vec .

2. Pec selects information from an edge independently of others: PecPêc = 0 if ec 6= êc.

3. Pec ignores the subgrid, PecV0 = 0, but keeps Vβ invariant, PecVβ ⊂ Vβ .

4. Between the collection of Pec and P0 = I −∑ec
Pec , their ranges cover all V ; that is,

V can be decomposed in a direct sum of the ranges.

We want an additional property for Pec , that of orthogonality, while keeping all the above.

This will complete our ability to consider edges independently of one another.

If we use a basis for Vβ where corner, edge, and face shape functions have minimal

support, then Pec is diagonal (and so is symmetric making Pec an orthogonal projection).

Note that in choosing a new basis, the shape parameters β that specified a space Vβ with

our original basis are different from the shape parameters β̃ that now specify that same

space; that is, Vβ = Vβ̃ but β 6= β̃ and Vec has changed. This will serve as our motivation for

reparameterizating Vβ . By doing so we will be able to construct edge information extracting

(A-)orthogonal projections.

Constructing new edge projections

As we noted in section 2.2, the space V can be decomposed as a direct sum of V0, the

subgrid, and the Vec , the edges. If we form a block matrix with the columns of I0 and the

columns of the Vec , we will get a non-singular matrix. That is, choose an ordering for the

edges ec1 , ec2 , . . .. Then form the block matrix

V =
[

I0

∣

∣ Vec1

∣

∣ Vec2

∣

∣ . . .
]

.

This matrix has a QR factorization because it is non-singular. Let V = Q̃R̃ if the ordinary

inner product is used to compute the factorization, and let V = Q̂R̂ if the A-inner product

is used. We will use the “Q” part to get our reparameterization.

Suppose n0 = dim V0, n1 = dimVec1
, n2 = dim Vec2

, and so on. Then the first n0

columns of Q̃ and Q̂ still span V0. However, the next n1 columns of either do not span Vec1
;

their span is something new: call it Ṽec1
and V̂ec1

.6 We can move down the line of ec’s in

this fashion defining new “edge” spaces.

Definition 4.4.1. Let Vβ̃ be the space spanned by V0 and Ṽec β̃ec for all ec. Let Vβ̂ be the

space spanned by V0 and V̂ec β̂ec for all ec.

6Again, for convenience, we will use the same symbol for a map from shape parameters to V , the space
(the range of the map), and the matrix representing the map (whose columns are taken from the QR
factorizations above).
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Note that R̃ and R̂ can be used to map from our originally defined shape parameters

β to the new parameters β̃ and β̂; this is a correspondence (a bijection).

Definition 4.4.2. Let P̃ec be an orthogonal edge-information extraction operator that works

on Vβ̃. Let Q̂ec be an A-orthogonal edge-information extraction operator that works on Vβ̂.

These two projections have all the properties listed above for Pec , but they are also

(A-)orthogonal projections. The projections P̃0 = I −∑ec
P̃ec and Q̂0 = I −∑ec

Q̂ec are

also (A-)orthogonal. (Note that Q̂0 = I − Z0, too.)

Computing the points

Now that we have set up an A-orthogonal edge-information extraction projection, computing

the points where eβ is A-orthogonal to Te
β
E is relatively easy. As a start, we note that the

new edge projection can also be used to describe E .

Corollary 4.4.3. The collection of all error vectors E is the intersection of V ⊥A

0 and

{e | eTAQ̂ec(u− e) = 0 ∀ec}.

From this new representation for E , we see that A-normals are columns of I0 and

Q̂ec(u−e)− Q̂
∗
ece. However, Q̂ec is an A-orthogonal projection so Q̂ec = Q̂

∗
ec . Thus we have

the simpler form for the A-normal as Q̂ec(e − 1
2u). (These are clearly independent.) Once

we have this, the points follow immediately.

Theorem 4.4.4. Assuming Q̂ecu 6= 0 for every ec, there are 2#ec points where the Newton

step is zero. They are those e where Q̂ece = 0 or Q̂ece = Q̂ecu for every ec with Q̂0e chosen

so that e ∈ V ⊥A

0 .

Proof. That the Newton step is zero means Ptaneβ = 0. In turn, this means eβ is in the

normal space to E at eβ ; thus there exist a vector λ0 and scalars λec such that

eβ = I0λ0 +
∑

ec

λecQ̂ec(eβ − 1
2u).

Applying Q̂ec to the above equation gives

Q̂eceβ = λecQ̂ec(eβ − 1
2u) (4.3)

because Q̂ec is linear, Q̂ecI0 = 0, and Q̂ec1
Q̂ec2

= 0 if ec1 6= ec2 . Adding −1
2Q̂ecu to both

sides of the above equation and collecting the terms in eβ − 1
2u gives

(1− λec)Q̂ec(eβ − 1
2u) = −1

2Q̂ecu.
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Assuming Q̂ecu 6= 0 for all ec, we can conclude 1 − λec 6= 0. Returning to equation (4.3)

and collecting terms in eβ gives

(1− λec)Q̂eceβ = −1
2λecQ̂ecu

so that

Q̂eceβ = − λec

2(1− λec)
Q̂ecu. (4.4)

We know from the above corollary that eβ also lies on the cylindrical ellipsoid

eT
βAQ̂ec(u− eβ) = 0.

Since Q̂ec is an A-orthogonal projection, we get

(Q̂eceβ)TAQ̂ec(u− eβ) = 0

or

(Q̂eceβ)TA(Q̂ecu)− (Q̂eceβ)TA(Q̂eceβ) = 0.

Substituting in what we know about Q̂eceβ from equation (4.4), and again assuming Q̂ecu 6=
0 so that (Q̂ecu)TA(Q̂ecu) 6= 0, we get

(

− λec

2(1− λec)

)

−
(

− λec

2(1− λec)

)2

= 0.

Thus either λec = 0 or λec = 2; it follows that either Q̂eceβ = 0 or Q̂eceβ = Q̂ecu.

A quick comment about the subgrid and λ0: the Q̂ec are A-orthogonal to each other

and to Q̂0. Thus we can pick Q̂0eβ = 0 and λ0 = 0; then e ∈ V ⊥A

0 . Equivalently, hit the

very first equation with IT
0A.

Strictly speaking, we have only proven the theorem for the geometry of E with the

A-normal fiber bundle. However, the various geometries of E with normals and A-normals

(along with the corresponding ones for the collection of residuals) are all affine diffeomorphic.

Since this geometry has a discrete set, it must be that the other geometries do, too.

Regarding the condition that Q̂ecu 6= 0, in the single edge case, Pecu = 0 is equivalent

to u ∈ V0. That is, V ⊥A

0 misses the ellipsoid eTA(u− e) = 0. In the many edge case, things

are more complicated, but we pass on worrying about it since the collection of u such that

there is an ec where Q̂ecu = 0 is a set of measure zero (in the usual Lebesgue measure).
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Geometry of E

We said above that eTAQ̂ec(u− e) = 0 describes a cylindrical ellipsoid. By using that Q̂ec

is an A-orthogonal projection, we can complete the square to get

(

Q̂ec(e− 1
2u)
)T

A
(

Q̂ec(e− 1
2u)
)

= 1
4(Q̂ecu)TA(Q̂ecu).

Note that the right-hand side is strictly positive, and AQ̂ec is positive semidefinite. The

vector e − 1
2u is restricted by the equation to an ellipsoid in the direction of the range of

Q̂ec , but it is free in every other direction. Thus we use the name cylindrical ellipsoid.

The degrees of freedom constrained by one Q̂ec on one edge are independent of the

degrees of freedom constrained by the projection on another edge (the axes of the cylinders

are independent). Along with e ∈ V ⊥A

0 then (which gets all the rest), we have an ellipsoidal

toroid (a tensor product of ellipsoids). This is a manifold so so is E ; it is, in fact, a smooth

(C∞) manifold.

4.5 Analogy with dynamical systems

We adopt an approach from stability analysis of dynamical systems to prove our algorithm

has monotone, global convergence. The analogy we make is important so we separate it out

in its own section.

Define the Newton path7 as the solution to the initial value problem

β(0) = β0

dβ

dt
= −(e′β)†eβ

(4.5)

At a given β, this path heads in the direction of the Newton step at a rate proportional to

the step size. Exactly the same (implied) path of β’s is followed by the initial value problem

e(0) = eβ0

de

dt
= −Ptaneβ

(4.6)

because of the chain rule. This path, too, follows the direction of the Newton step.

A few remarks are in order. The fixed points of the above ordinary differential

equations correspond to the fixed points of Newton’s method. Each initial value problem

actually represents two dynamical systems: one with the pseudoinverse (†) and the orthog-

onal projection onto the tangent space, and another with the modified pseudoinverse (†A)

7The usage here of “Newton path” differs slightly from that in the literature, but the idea is similar.
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and the A-orthogonal projection. Newton’s method results from applying Euler’s method

to these initial value problems with a step ∆t = 1.

The first initial value problem is stiff [40]; the non-zero singular values of e′β can be

as widely spread as those of A. A reasonable numerical approximation of a trajectory will

require small steps — just as applying Newton’s method directly to finding a root of eβ
required damping8 — or an implicit method. On the other hand, the second initial value

problem is decidedly not stiff; a projection is as well-conditioned as can be. Full sized steps

are acceptable; no damping is required.

As a minor note, the trajectories stay on the manifolds E and a normalized collection

of shapes β. For the second differential equation, this is easy to see: de
dt is in the tangent

space to E . For the first one, the range of (e′β)† is orthogonal to the kernel of e′β . The kernel

of e′β represent directions in β for which eβ does not change; these include scalar multiples

of β on edges. Hence the direction keeps β on a tensor product of spheres (one per edge).

4.6 Almost sure global monotone convergence

Now that we have a dynamical system to analyze, we can use stability analysis [39, 80] to

determine whether its fixed points are stable or unstable and what their basins of attraction

are. We will find that there is but one stable, attracting fixed point — eβ = 0 — and its

basin of attraction is almost all points.

The first subsection will treat the continuum case and prove the above statement.

The second subsection will treat Newton’s method. As noted above in section 4.5, Newton’s

method is a discrete approximation to the continuum: it results from applying Euler’s

method with a step ∆t = 1.

Continuum case

We introduce positive definite functions — Lyapunov functions — to measure stability

around eβ = 0 of the dynamical system in equation (4.6). Let L(e) = 1
2eT e, and use this for

the system with the orthogonal projection onto the tangent space. Let LA(e) = 1
2eTAe, and

use this with the A-orthogonal projection. With these Lyapunov functions, we can prove

the following theorem.

Theorem 4.6.1. For almost every u, the Newton path almost surely converges to β = β
∗

where eβ∗ = 0.

8Quoting [27, p124], “Even far away from the solution ... the Newton direction is an outstanding direction;
only its length may be too large for highly nonlinear problems.”
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Proof. The rate of change of L and LA along their respective Newton paths can readily be

computed. For L it is

dL

dt
= L′ · de

dt

= −eT
β (Ptaneβ)

= −(Ptaneβ)T (Ptaneβ)

= −‖Ptaneβ‖2,

and for LA it is

dL

dt
= L′ · de

dt

= −eT
βA(Ptaneβ)

= −(Ptaneβ)TA(Ptaneβ)

= −‖Ptaneβ‖2A.

Thus we always have dL
dt ≤ 0 and dLA

dt ≤ 0. Moreover, dL
dt = 0 and dLA

dt = 0 if and

only if Ptaneβ = 0 with Ptan orthogonal for the first and A-orthogonal for the second. We

will consider the A-orthogonal case going forward; the orthogonal case follows from the

diffeomorphism between the two cases.

Theorem 4.4.4 tells us exactly how to characterize these points. If Q̂ecu 6= 0 for

every edge ec (the “almost every u” assumption), then either Q̂eceβ = Q̂ecu or Q̂eceβ = 0

for every ec. We claim the only stable fixed point is eβ = 0 where Q̂eceβ = 0 for every ec;

every other one is either semi-stable or unstable. (In fact, the only unstable one is eβ = u

where Q̂eceβ = Q̂ecu for every ec; the others are all semi-stable.)

A stable fixed point is a local minimum of L along the manifold E . If eβ 6= 0, then

eβ being a fixed point means there is at least one edge ec where Q̂ec(eβ − u) = 0. Thus

Q̂ec(Iβuβ) = 0. Considering the space of shape parameters β — where it is feasible to move

every direction — almost any direction will do to find a smaller error (and L). For instance,

pick the direction β̂
∗
ec to move in β-space (where β

∗
is a shape that gives the solution, and

β̂
∗
ec is the corresponding shape in the reparameterized space restricted to ec).

To sum up, there is but one stable fixed point at L(A) = 0, and we know
dL(A)

dt < 0

save for the other (semi-stable or unstable) fixed points. We can be more discriminating by

examining edges one at a time.

We claim the basin of attraction of the stable point eβ = 0 is almost all β (almost

all of E). This is the “almost sure” in the conclusion of the theorem. To prove this, we
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consider LA,ec(e) = 1
2‖Q̂ece‖2A = LA(Q̂ece). It follows that

dLA,ec

dt
= −(Q̂eceβ)TA(Ptaneβ).

Since Q̂ec and Ptan are both A-orthogonal projections, and further since Q̂ec and Ptan

commute, we get
dLA,ec

dt
= −‖Ptan(Q̂eceβ)‖2A.

This is only zero if Q̂eceβ = Q̂ecu or Q̂eceβ = 0 by theorem 4.4.4 (the conditions on other

edges are satisfied trivially); this is otherwise negative.

The subset of E where there is an edge where Q̂eceβ = Q̂ecu or Q̂eceβ = 0 is of

measure zero; at all other points LA,ec is strictly decreasing. As this applies to all edges,

almost any starting point for a trajectory must have LA,ec → 0 as t → +∞ for all ec and

LA =
∑

ec
LA,ec → 0 as well.

We make three remarks. First, the basin of attraction of eβ = 0 is not all space save

the other fixed points; it is slightly less. There are trajectories that have the other fixed

points as limit points.

Second, evolution along trajectories is not a contraction of L (even though level sets

are nested). This is easy to see in the single edge case: two points on “opposite” sides of

the “pole” eβ = u will head in opposite directions around the sphere towards eβ = 0. That

is, this line of reasoning cannot be used to conclude that the method converges.

Last, even though evolution along trajectories is not a contraction, along a single tra-

jectory the Lyapunov function L(A) always decreases:
dL(A)

dt < 0. Thus our proof showed ‖eβ‖
decreases monotonically to zero along the Newton path with an orthogonal Ptan. Likewise

‖eβ‖A decreases monotonically to zero along the Newton path with an A-orthogonal Ptan. It

appears that on the two different paths only the associated norm decreases. However, the

situation is actually much better: on both paths, the level set functions FM (e) = 1
2eT Me

monotonically decrease (where M is a symmetric positive definite matrix) once we get close

to the origin. We have the following theorem.

Theorem 4.6.2. Suppose B and M are symmetric positive definite matrices, and Ptan is

the B-orthogonal projection onto the tangent space of E. There is a neighborhood in E of

the origin in which the Newton direction (using the B-orthogonal projection) always reduces

the M -norm.
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Proof. At a given e ∈ E , the Newton direction is −Ptane. Let

G =
{

e ∈ E
∣

∣ − Ptane is a descent direction for e in the M -norm
}

=
{

e ∈ E
∣

∣ eT MPtane ≥ 0
}

.

The equality holds because ‖e‖2M = eT Me. The set G contains more than just the origin as

nearby points with ‖e‖M small also belong; this will follow from some simply geometrical

estimates. If κ is the maximum principle curvature of E at the origin in the B induced

metric, then the central angle made by e is approximately κ‖e‖B. The B-inner product of

e and Ptane is bounded below by

‖e‖2B
(

1− 1
4κ2‖e‖2B

)

.

The B-norm and M -norm are equivalent, though, so that the above quantity is bounded

below by
λB

min

λM
max

‖e‖2M
(

1− 1

4

λB
max

λM
min

κ2‖e‖2M
)

where the λ’s are the eigenvalues of B and M as noted. For sufficiently small ‖e‖M , the

above is positive.

The estimate in the proof notwithstanding, we conjecture that these neighborhoods

are actually quite large — half of E . Regardless of their size, though, the intersection of

these neighborhoods (over all M for a fixed B) is just the origin. That is, no matter how

close we are to the origin (the solution), there is always an M -norm that will increase when

we step in the Newton direction. However, as we get close to the origin, these non-decreasing

norms degenerate.

This theorem applies with B and M equal to A or I. For instance, when B = A and

M = I, we have the A-orthogonal tangent projection measured in the ordinary Euclidean

norm.

Discrete case

As we saw above, the Newton direction δeβ = −Ptaneβ is always tangent to a path along

which a Lyapunov function decreases. Its size is limited, too: ‖δeβ‖ ≤ ‖eβ‖ because a

projection can only decrease its size (using the ordinary norm or the A-norm as appropriate).

However, ‖eβ‖ is the as-the-crow-flies distance direct to the origin (eβ = 0). Further, the

as-the-crow-flies distance is less than the geodesic distance along the manifold E . Thus, even

as the Newton direction is a descent direction for the Lyapunov function, the Newton step

also can never overshoot the origin, the minimum of the Lyapunov function. The following
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corollary results.

Corollary 4.6.3. For almost every u, and from almost every initial value β0 for the shape

parameters, the Newton method of section 4.3 converges to β = β
∗

where eβ∗ = 0. The

convergence is asymptotically monotone and quadratic.

Monotonicity follows from the remarks after theorem 4.6.1 and the reasoning above.

The quadratic convergence rate follows from Newton’s method. The only twist here is that

the domain of our objective function is a smooth manifold and not ordinary Euclidean space

R
n. See [3].

Given the equivalence of the dynamical systems, we can conclude that the direct

application of Newton’s method to finding a root of eβ also converges globally and mono-

tonically for sufficiently strong damping. Note that the undamped method does not share

this property; generally δβ is too large and results in overshooting the root. On the other

hand, δeβ is naturally size limited; it cannot overshoot.

4.7 A practical geometric method

We face a number of practical problems in implementing the above. First we discuss the

problem of the use of the error eβ in a central place in the algorithm; this is the only difficult

problem with the algorithm. The other problems we face are much easier to tackle. These

include computing an approximate tangent projection, initializing the algorithm, computing

an approximation to geodesics on E (the exponential map), along with several others.

Error estimation and use as an accelerator

Our method requires knowledge of the error, but if we knew the error, we would have no

need for our algorithm. We need to estimate the error instead (in an accurate fashion).

For instance, we could apply a few iterations of a smoother9 to the residual to obtain

an error estimate. Easy criteria have already been developed for inexact Newton methods

to judge whether we maintain convergence (and superlinear or quadratic convergence at

that). See, for example, Sections 2.1.5, 2.2.4, and 2.3.3 from [27] (or Sections 3.2.3, 3.3.4,

and 3.4.3 for the global results). This issue seems ripe for quantification. However, judging

whether global convergence is retained (in general or in the case of a particular smoother)

will take some further analysis.

More generally, we can view our method as an accelerator for any iterative method.

Use just a single (or a few) iteration(s) of your favorite iterative method to estimate the

error. This is the “inner” iteration. Take this error estimate and use it in a single iteration of

9Jacobi, Gauss–Seidel, (S)SOR, ILU, IC, among others, for instance.
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the geometric Newton’s method. This is the “outer” iteration. Again, we can use already

proven results on inexact Newton methods to judge whether superlinear convergence is

achieved, but judging whether global convergence is retained will take further work.

As a few examples, one could also use conjugate gradients or even an approximate

direct method such as an incomplete factorization. Also, at any iteration we have solved

a (multiscale) finite element problem. Perhaps we can apply some ideas from a-posteriori

analysis to estimate the error or further improve an estimate.

As another example, one could pair our method with multigrid. However, as a step in

our algorithm we already effectively compute a coarse grid correction. It seems reasonable,

then, to just pair with a smoother.

Simply pairing with a smoother seems sensible for another reason: smoothers act

locally. The residual is zero on the subgrid (V0) and non-zero on edges; conveniently enough,

we only care about the error on edges. As noted before, to a fair approximation edges are in-

dependent; block Jacobi with blocks by coarse edges (ignoring the subgrid in computations)

seems like a good idea — inexpensive and reasonably accurate.

Computing the projection onto the tangent space

Computing the A-orthogonal projection onto the normal space requires solving a system

approximately the size of a multiscale problem; the edge projection Pec fouls up orthogo-

nality to AV0 (or A-orthogonality to V0). This might be an acceptable cost except that this

system does not have the special structure of a multiscale problem. The blocks involving

coarse degrees of freedom are dense. On the other hand, the coarse system has weak cou-

pling between edges. The system could be approximated by a diagonal one because of the

weak coupling if the effect of the subgrid is ignored, too.

A much simpler approximation, conceptually and computationally, is using the en-

closing ellipsoid eT
β A(u−eβ) = 0 to approximate E . This ellipsoid has but a single A-normal

in V ⊥A

0 so the “solve” becomes just a dot product and a scalar division. We do not know the

precise effect of this approximation, but it has been used in our code with seeming success.

The practical examples in Chapter 5 bear out that it does work well in practice.

The formula for the enclosing-ellipsoid approximation to the tangent projection could

be computed using only matrix-vector multiplies and vector dot products. However, there

are several equivalent forms for this expression; we can use the identities u = eβ + Iβuβ ,

eT
βAeβ = uTAeβ , Aeβ = rβ, and Au = f to generate a variety of formulas. Though they are

equivalent when using the exact quantities, they may or may not produce the same result

when using approximate quantities. As noted in the above section, we must approximate

the error eβ . Rounding errors may also have an effect. One is naturally lead to the questions:

under what conditions are they equivalent in the face of approximation? If they are not
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equivalent, which one is best to use?

For certain, the solution u is not computationally available; however, we will assume

eβ is (via the previously discussed approximation). To tackle this first problem, instead of

calculating eβ − 1
2u we can calculate 1

2(eβ − Iβuβ) since u = eβ + Iβuβ . Thus

Ptan ≈ I −
(eβ − 1

2u)(eβ − 1
2u)TA

(eβ − 1
2u)TA(eβ − 1

2u)

becomes

Ptan ≈ I −
(eβ − Iβuβ)(eβ − Iβuβ)TA

(eβ − Iβuβ)TA(eβ − Iβuβ)

or

Ptan ≈ I −
(eβ − Iβuβ)(rβ − 1

2f)T

(eβ − Iβuβ)T (rβ − 1
2f)

using Aeβ = rβ and Au = f for the last formula.10

For further flexibility, note that we do not need to compute the tangent projection

of any vector; we just need to compute it for the error eβ . For instance, one could apply

the formula

(eβ − 1
2u)TAeβ = 1

2uTAeβ = 1
2fT eβ

in computing the numerator of the above fraction. In an exercise in substitution, one can

arrive at the symmetric-looking formula:

Ptaneβ ≈
1

C

(

(fT Iβuβ)eβ + (fT eβ)Iβuβ

)

where C = (eβ − Iβuβ)TA(eβ − Iβuβ).11 Other such formulas are certainly possible. The one

above is useful because it only relies on the computationally available quantities f and Iβuβ

along with the assumed error approximation eβ (it does not rely on the unknown u).

Assumption that the solution is non-zero on edges

The assumption that Q̂ecu 6= 0 for every ec is almost sure to happen (with a uniform measure

of solutions u). If it does not happen, it actually makes things easy from a computational

point of view: any shape will do for that edge. We might worry that our procedure breaks

down; the only thing that can is the tangent space projection. However, our approximation

10Another item of note is that the denominator is constant independent of β: it is a multiple of uTAu in
each of the three formulas above. Is it better to just approximate the constant once and for all? Probably
not.

11As noted before, this is a constant. It is equal to uTAu. If the error is small eβ ≈ 0, then it seems
reasonable to approximate uT Au ≈ (Iβuβ)T A(Iβuβ).
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using the whole ellipsoid always is well defined — unless, of course, u ∈ V0 and the algorithm

ends at the first step.

“Near” violations are not a problem; there still is a shape on the edge. Small edge

magnitudes relative to other edges means there is a small error relative to other edges.

In other words, mistakes in the shape make for small errors when multiplied by the small

coarse edge values in uβ ; that is, Iβuβ will be small along the edge, too.

Initialization

We know using β = 0 is bad (it is a stationary point), but any other initial value is almost

sure to produce a non-zero descent direction. A natural choice is a β that gives ordinary

coarse shapes for the multiscale problem. Rounding errors and other approximations will

also tend to prevent us from landing exactly on a fixed point. Also, practical computational

experience with multiscale methods show they often produce excellent approximations to

the true solution.

The shape of L restricted to E is well-approximated by a quadric. When we start

near the solution, Newton’s method will converge quadratically to it. On the off chance

we do start near a fixed point, by symmetry, we will move quadratically fast away from it.

That is not so impressive, of course, because it does not imply we move quickly towards the

solution; this can still be quite slow. For our algorithm, it would seem to be the best we

can do. On the other hand, if we somehow we could detect this condition, it might behoove

us to use a few iterations of another iterative solver to first move us away from the fixed

point, then switch back to Newton to polish it off.

Approximating geodesics

The exponential map exp(p, d) where p is a point on a manifold and d is a tangent vector

takes one along a geodesic (shortest distance path) from p for a distance ‖d‖ in the direction

of d/‖d‖. One can write an ordinary differential equation which describes geodesics: the

acceleration along the curve is normal to the surface of a magnitude of the directional

curvature of the surface; there is no lateral acceleration along a geodesic. In general, this is

a difficult map to compute.

On the other hand, there is a very simple approximation: taking p as a vector (say,

from an embedding of the manifold into R
n), then

exp(p, d) ≈ p + d.

That is, approximate the geodesic by its initial tangent. Our manifold E already has a
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natural embedding (which we have been using all along); it is very easy to compute

exp(eβ , δeβ) ≈ eβ + δeβ .

This approximation, though, is not a “retraction”. That is, the new vector eβ + δeβ
is no longer on the manifold. However, when combined with imputing the coefficients, it

can be considered as a retraction on the shape parameters β. Substituting a retraction for

the exponential map does not affect the asymptotic convergence rate [3]. Perhaps it affects

robustness, but we have not seen any poor behavior in our computational experience so far.

The tangent approximation is essentially what is used in the naive Newton’s method

of chapter 3. We could go back and substitute exp(β, δβ) for β + δβ since computing the

exponential map on a sphere (or tensor product of spheres) is possible to do simply with

trigonometric functions. (Or one could substitute a higher order approximation to the

exponential.)

Successor multiscale solution

In the implied update to Iβuβ ← u− eβ in step (5) of the algorithm, we can avoid the need

for the unavailable solution u. If eprev is the error from the previous step and enext is the

error in the current step, then

eprev = u− (Iβuβ)prev

enext = u− (Iβuβ)next

so that

(Iβuβ)next = (Iβuβ)prev + eprev − enext.

Thus we can substitute to get rid of the unknown u in favor of the (presumably)

computationally available (or, rather, already computed or approximated) errors. This

substitution is exact if the errors are. We hope, of course, that this substitution has minimal

effect when, say, the errors are approximated. Some computational experience indicates that

this is not the case — this substitution does not cause any (further) problems.

Note that if we use a linear approximation to the geodesic exp(eβ , δeβ) ≈ eβ + δeβ ,

then this update is just

(Iβuβ)next = (Iβuβ)prev − δeβ

with similar results for higher order approximations to the geodesic.
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Imputing β from Iβuβ

Imputing β from Iβuβ is an easy calculation. We can always construct β by going edge-by-

edge and defining

βec =
(

Pe(Iβuβ)
)∣

∣

ec
.

Computing (Pev)|ec is an easy calculation: ignore entries in the vector v corresponding to

the subgrid and just look at entries corresponding to edges. If corner shape functions have

support in a single fine patch, ignore the corner entries too (and just copy edge entries);

if not, subtract from edge entries an amount corresponding to
∑

corners αcornervcorner where

αcorner is the entry in Iβuβ at the central corner of vcorner (we use a Lagrangian basis —

vcorner has height one there).

At the same time we calculate the new shape β, we can normalize it:

βec ←
βec

‖βec‖
.

This will avoid poor scaling of Aβ .

Solvers for subgrid and coarse subproblems

As noted in chapter 2, to solve a multiscale problem we split it into two pieces. We first

solve for the influence of the coarse degrees of freedom on the subgrid, then substitute this

in a coarse problem and solve it.

Our algorithm calls for solving a sequence of multiscale problems. As the sequence

evolves, though, only the coarse shapes change; the subgrid shapes stay fixed. If we use

direct solvers for the subgrid problems, we only need to compute a factorization of these

matrices once. When the coarse shapes change, computing new influence functions can be

done cheaply via the already computed factorizations; that is, the right-hand side data for

the subgrid problems changes, but the problems themselves do not. Using direct solvers for

the subgrid problem is also reasonable since we consider these problems to be “small”.

On the other hand, there does not seem to be a clear choice for the coarse problem.

We cannot reuse a factorization from iteration to iteration (not even a low-rank update is

available), and the size and ill-conditioning of the coarse problem may also preclude using

a direct solver (on the other hand, it might not). The alternative, of course, is using an

iterative solver such as preconditioned conjugate gradients. Another possibility would be

to use our algorithm in a recursive fashion.

If an iterative solver is used (for either the subgrid or the coarse), we must ask what

effect this will have on our algorithm. That is, we are left with an inexact Iβuβ . It seems,

though, that this can be accounted for by theorems on inexact Newton methods just as it
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would be for estimating the error.

Other problems

Another issue is that of parallelism in the algorithm. The subgrid solves and updates can

naturally be done in parallel since these are independent of one another. Dot products and

residual evaluations can also be done in parallel (with a minimum of communication) as can

coarse matrix assembly. On the other hand, coarse solves may be tricky if the problem is

large and the data are spread across many processors; combining a domain decomposition

method with preconditioned conjugate gradients seems reasonable. However, if we balance

the sizes of the subgrid and coarse problems so that there are about the same size, and if we

make the subgrid problems large so that they are assigned to a single processor, then the

coarse solve can be assigned to a single processor. This would double its work load relative

to other processors but only at this one step in the algorithm. It seems likely that the other

processors could be kept busy most of the time.

Like the naive application of Newton’s method in chapter 3, quadratic convergence

implies the step size converges linearly to zero and so can be used in an easy-to-understand

stopping criterion: the step size is approximately the error size. We need not introduce any

opaque tolerance to set. What the cumulative effect of the other approximations has we do

not know. In our computational experience so far it has performed well (it has not lead to

any premature or delayed exits from the algorithm).

Note that the exact method requires no damping under any circumstance. Most of

the approximations we introduce seem unlikely to change this; computational experience

bears this out. On the other hand, approximating the error (using this method as an

accelerator) may requiring damping. Further research and computational experience is

needed.

4.8 Summary

We have developed a variant of Newton’s method to optimize the basis shapes for a flow

problem so that they match the shape of the solution. The exact version of the algorithm

converges globally and monotonically with a quadratic asymptotic rate. The algorithm

computes no Jacobians, needs no damping, and otherwise has no opaque parameters to set.

The algorithm is readily approximated to be computationally inexpensive, and computa-

tional experience indicates these approximations do not affect performance. The algorithm

needs an externally provided error estimate at each iteration; this portends our algorithm’s

use as an accelerator for that external error estimation procedure (whatever it may be).
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To sum up the algorithm: pick coarse edge shapes, solve a multiscale problem,

calculate a residual and an error estimate, calculate the tangent space projection, impute

new shapes, and repeat as necessary. The projection operation is well-conditioned and

easy computed (or approximated). The multiscale solve is broken into many pieces: lots of

subgrid problems (subsection of permeability field is almost sure to have lower heterogeneity

and the subgrid problem is itself of lower resolution) and a coarse problem (permeability

is “averaged” and so is less heterogeneous and the problem is a lower resolution one). The

error estimate is externally provided; however this estimate is given, we conjecture that we

improve on it.

We have a number of conjectures on other notable features of the algorithm. Com-

putational experience along with some incomplete theoretical results indicate the algorithm

is robust with respect to the ill-conditioning of the underlying fine problem. The contribu-

tors to the ill-conditioning are the resolution, h, or the number of degrees of freedom; and

the heterogeneity, kmax/kmin, or the relative roughness of the eigenvectors of A. Neither of

these appears to impact the number of iterations needed for convergence.
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Chapter 5

Onward and upward: interesting

“real world” examples

We present applications of our algorithms to problems of a difficulty more interesting to

practitioners.

In every one of the following examples we simulate a quarter five-spot-like problem.

We use a 2-D square domain with homogeneous Dirichlet conditions, a source and sink

in opposite corners, and no gravity. Piecewise bilinear elements on a uniform square grid

were used to discretize the problem;1 the coarse grid was a uniform square grid as well.

The resolution (the fine and coarse grid spacing) and/or the coefficient k were varied from

problem to problem.

As was noted in Section 3.5, because Newton’s method has quadratic convergence,

a useful termination criterion is the step size being small. We can choose to use the step

size in β rather than in eβ . When the edge shape functions are normalized to a unit size,

the relative and absolute accuracy in β is the same (the error is not a moving target if we

change the right-hand side data). We also chose to use a root-mean-square measure rather

than just the l2 norm so that the termination criterion was independent of the (coarse

and fine) resolution; that is, we are able to make an apples-to-apples comparison of the

number of iterations required across problems of varying resolution (h and H). We chose

a termination tolerance of the square-root of the precision used (half the digits available)

figuring that rounding errors might prevent us from achieving better accuracy; when IEEE

double precision was used, this means we achieved full single precision accuracy.2

1Though Chapter 2 describes our methods for piecewise linears on triangles, the ideas work virtually the
same. And, as can be seen in this chapter, the results are the same.

2If the edge shape functions are normalized in magnitude, then relative and absolute accuracy of them
are comparable. If this accuracy is of size ǫ, then ‖eβ‖ . ‖u‖ǫ. Also, the root-mean-square error is equivalent
to L2 norm of the trace (on coarse edges) of the shape functions.
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It was checked to be sure that the algorithms were always in the regime of quadratic

convergence when they halted (and did not terminate prematurely when the error and step

size were of different orders). See, for example, the convergence histories in the next section.

In every computation, uniform shapes (β = 1) are used as an initial guess.

These results are as a stand-alone method. In each of the examples, we computed

the full Jacobian r′β for the naive Newton method, and we computed the exact error eβ for

the geometric method despite that this makes both algorithms computationally infeasible.

We reasoned that if the algorithms did not work well with this information, then any

approximation to them would not work well either. That is, we wished to separate aspects

of the underlying algorithms and the effects of introducing further approximations. Further

research on the geometric method as an accelerator is certainly in order.

However, with regards to the other computational considerations raised in Sec-

tions 3.5 and 4.7, we implemented all the other recommendations to make for a practical

algorithm. Notably, we used approximations to the tangent projection and the exponential

map in the geometric method, and we used adaptive damping for the naive Newton method.

(A direct solver was used to get a reference solution.)

5.1 Convergence histories

We present convergence histories on a small-ish problem to demonstrate notable differences

in the behavior of the three algorithms. A 10×10 fine grid was used with a 2×2 coarse grid

(there were 16 shape parameters in β). In one set of computations, constant coefficients

(k = 1) were used. In another set the coefficients from Figure 5.1 were used; these are

moderately heterogeneous.

As can be seen in Figure 5.2, the Jacobi-like algorithm gets linear convergence,

and the two Newton methods get quadratic (asymptotic) convergence. The naive Newton

method does experience a delay in the onset of quadratic convergence, though, for hetero-

geneous coefficients; the initial convergence seems linear (at best). The geometric method,

on the other hand, experiences no such degradation with the increase in heterogeneity. (We

have not been able to prove this, but see Section 5.3 for further discussion.)

The convergence is monotone all around. We have only been able to prove this for

the geometric method; see Section 4.6 in Chapter 4 above.

The rate constant for the Jacobi-like algorithm is about 0.43/iteration for constant

coefficients, and is about 0.87/iteration for the heterogeneous coefficients. This convergence

rate is not so bad (depending on your point of view). And each iteration is fast — sort of:

there is a coarse solve per iteration. Before the advent of the geometric method, the cost

advantage over the naive Newton looked acceptable (where there was a required Jacobian
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evaluation), but now it seems there is no advantage to the simplicity of the Jacobi-like

method.

It is an open question how the rate constant of the Jacobi-like method depends on the

level of heterogeneity (and how it depends on h and H/h). The corrector damping was set

to 2/3 for constant coefficient problem. There was some “tuning” needed for heterogeneous

coefficients; ultimately a damping of 1/8 was used.

The adaptively damped naive Newton method used no initial damping ω0 = 1 for the

constant coefficient problem. For the heterogeneous coefficients, some tuning was needed;

a value of ω0 = 1/10 was used (“mild nonlinearity”).

Figure 5.3 shows how the shapes along coarse edges evolve. Iterates from the geo-

metric method as applied to the heterogeneous coefficients are shown. The initial, uniform

shape is easily visible. On each edge, the second iterate has already made significant progress

towards the solution shape. Second and later iterates are indistinguishable from the solution

shape.

5.2 Problem size insensitivity (h→ 0)

The number of iterations required by the two Newton methods appears to be insensitive to

the size of the underlying problem (or the size of h, the discretization spacing). We have

not been able to prove this, but the computational evidence is compelling. It also comports

with the fact that when Newton’s method is used to solve approximations to nonlinear

partial differential equations, the number of iterations used is insensitive to the resolution

Figure 5.1: A sample 10 × 10 permeability field. The base-10 logarithm is plotted. Red
indicates high permeability; the greatest is 1160 mD. Blue indicates low permeability; the
smallest is 0.725 mD. The permeabilities span over three orders of magnitude. Data were
subsampled from those shown in Figure 1.2.
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Figure 5.2: Sample convergence histories for three different algorithms on two problems with
differing coefficients. The diagrams on the left are for constant coefficients; the diagrams on
the right are for the permeability field shown in Figure 5.1. The diagrams in the top row
are for the Jacobi-like algorithm, those in the second row for the naive Newton, and those
in the last row for the geometric Newton. In each diagram, the base-10 logarithm of the
l2-norm of the error is plotted versus the iteration number. There are notable differences
in the scales used, though.
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Figure 5.3: Sample convergence histories of edge shapes for the geometric algorithm on the
heterogeneous coefficients. A plot for each of the four coarse edges is shown. The thin line
is the initial shape, the dotted line is the shape after one iteration, and the solid line is the
solution shape. (The second and later iterates are indistinguishable from the solution.)
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of the discretization. This property of asymptotic mesh independence was noticed as early

as 1978 by McCormick in [60]. See also the bibliographic note in [27, p377] or the review

in [82].3

Figure 5.4 shows that the number of iterations seems independent of the resolution

when using the naive Newton method applied to the constant coefficients problem. (The

geometric method was not tested for the constant coefficient problem because of its excel-

lent behavior with much more heterogeneous problems.) Both the naive Newton and the

geometric Newton methods were applied to the heterogeneity field shown in Figure 5.5; the

results of these computations are shown in Figure 5.6. The naive Newton method seems

relatively insensitive to the resolution for the heterogeneous coefficients; at worst, there is

a weak trend. The geometric method, on the other hand, seems completely insensitive to

the resolution.

The data shown below in Figure 5.9 for the geometric method as applied to the chan-

nel/barrier permeability field (Figure 5.8) also demonstrate insensitivity to the resolution

1/h.

5.3 Heterogeneity insensitivity

The number of iterations required by the two Newton methods appears to be insensitive

to the heterogeneity of the permeability k. As mentioned in Section 6, this seems to be a

3The asymptotic mesh independence mentioned in these articles applies to nonlinear partial differential
equations. This contrasts with the linear equation studied here. Also different is that the algorithms applied
to nonlinear equations are not guaranteed global convergence whereas our (exact) algorithm is.
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Figure 5.4: The damped naive Newton method was applied to a quarter five-spot flow
problem with constant coefficients. In one case (shown at left), the coarse grid was left
fixed as the fine grid and subgrid were refined. In the other case (shown at right), the
subgrid was left fixed as the fine and coarse grids were refined. In each diagram, the
number of iterations needed for convergence to a fixed tolerance is shown on the vertical
axis. The resolution of the fine grid 1/h is shown on the horizontal axis.

57



Figure 5.5: A sample permeability field. The base-10 logarithm is plotted; blue areas
indicate high permeability, and red low permeability. The permeability was simulated using
a correlated Gaussian random field at a resolution of 1680×1680. There were three (stable)
semi-variogram structures: one with a correlation length 40% of the field width, one 15%
of the field width, and another 5% of the field width; the first two had triple the variance
of the last. Overall, the mean permeability is 100 mD, and the standard deviation is 258
mD; the minimum is 0.037 mD, the 5th percentile is 1.08 mD, the median is 24.7 mD, the
95th percentile is 411 mD, and the maximum is 3780 mD. Statistical subsamples were used
to generate lower resolution versions for subsequent tests (the field was divided into blocks,
and a pixel picked uniformly at random from the block as representative).
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Figure 5.6: As in Figure 5.4, the number of iterations required is plotted as a function of
h. However, heterogeneous coefficients subsampled from the field shown in Figure 5.5 are
used in place of constant coefficients. As before, the fixed H case is shown at left, and the
fixed H/h case at right. The results for the damped naive Newton method are shown in
the first row, and the geometric Newton method in the second. At each resolution several
subsamples were taken from the permeability field. The minimum number of iterations
required for convergence is plotted in blue, the median number in green, and the maximum
number in red.
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rather unique property. As with the insensitivity to the resolution, we have not been able to

prove this, but the computational evidence is compelling (at least for the geometric method

— see the figures below). It also comports with the fact that the projection operators I−Zβ

and Zβ can be bounded independently of A (or the condition number of A) so long as A is

symmetric, positive definite, and diagonally dominant [76, 66, 33]. How exactly this relates

to the problem at hand remains to be discovered.

As a first test of the sensitivity of the algorithms to the degree of heterogeneity in

the coefficients, we took the permeability field of Figure 5.5 and rescaled it to generate a

range of fields with differing heterogeneity. That is, we took the field and linearly rescaled its

logarithm so that the ratio of maximum to minimum values was a specified value. Figure 5.7

shows the results of these computations. Note the scale on the horizontal axes: the logarithm

of the maximum to mimimum values is plotted. Zero on the left corresponds to constant

coefficients; to the right, the ratio ranges up to 1012!

For the naive Newton method there may be a trend. It is difficult to tell, though; the

data for h = 1/8 and h = 1/12 seem to flatten out to the right. An additional difficulty was

the tuning necessary to get the algorithm to converge; see the following section on initial

damping for further details. On the other hand, for the geometric Newton’s method it is

clear there is no trend. The number of iterations required is fixed regardless of the level of

heterogeneity. (Also recall there is no tuning done for this method.)

It is a problem of engineering interest to examine the sensitivity of simulated flows

to a changing variogram. This set of tests leads to the educated guess that the performance

of the algorithm is insensitive to the correlation length(s) inherent in the permeability field.

That is, we varied the resolution while leaving the (physical) field fixed. The lengths that the

algorithm saw depended on the resolution but had no effect on convergence. On the other

hand, some upscaling and multiscale techniques experience “resonance” effects between the

scale of coarsening and the scale of correlation lengths in the permeability field. Some

further exploration is warranted.

As a second test of the sensitivity to heterogeneity, we generated an artificial two-

level permeability field. It is shown in Figure 5.8; the ratio of the permeability in the two

colored regions in the diagram was varied. When the permeability of the red region was

less than that of the grey, this is a barrier problem; when the permeability of the red is

higher, this is a channel problem. Figure 5.9 shows the results of these computations. Again

note the scale on the horizontal axes: the middle of the diagrams (at zero) corresponds to

constant coefficients. At the extreme left and right of the diagrams the ratio of maximum

to mimimum ranges up to 1010!

Again, for the naive Newton method there may be a trend. It is difficult to tell,

though; the data seem to flatten out to the right. Tuning problems may have caused the
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Figure 5.7: The number of iterations required is plotted versus the base-10 logarithm of
the ratio of maximum to minimum permeability. At each resolution several subsamples
were taken from the permeability field of Figure 5.5; the logarithm of the sample was then
rescaled linearly to generate a range of fields with differing ratios of maximum to minimum
permeability. In the lower diagrams, error bars on a given data point represent the range
of permeabilities of the subsamples and the maximum and minimum number of iterations
needed. As before, the fixed H case is shown at left, and the fixed H/h case at right. The
results for the damped naive Newton method are shown in the first row, and the geometric
Newton method in the second. Color labels the varying resolutions in 1/h.
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two high outliers on the h = 1/12 curve. To the left it is difficult to tell because of the

incomplete data.

On the other hand, the geometric Newton’s method again has no difficulty with the

large jumps in the permeability. The number of iterations required is fixed regardless of the

level of heterogeneity.

5.4 Sensitivity of initial damping ω0 for the naive Newton

method

As noted, for the damped naive Newton’s method it is necessary to specify (an esti-

mate/guess for) the initial damping ω0 as a parameter to the algorithm. The algorithm

can sometimes adapt to a poor choice and estimate a better one; sometimes it cannot, and

the algorithm fails to converge. If the initial estimate works well enough in reducing the

objective, the algorithm leaves it alone.

When running the heterogeneity sensitivity experiment from the section above, we

recorded the initial damping factors that were ultimately used in the first step the algorithm

took. In all cases, the initial damping was initially set at ω0 = 0.2. Plots of the recorded

data are shown in Figure 5.10.

There is a fairly clear trend for increasing heterogeneity in the permeability: the

initial damping must be set smaller as the heterogeneity increases. Small damping indicates

a highly nonlinear problem. (And note small damping means small steps; we might expect

more steps to be taken.) There also appears to be a weak trend downward for decreasing h

Figure 5.8: A two-level permeability field. The gray represents one permeability, the red
another. When the red permeability is higher than the gray, there is a channel. When the
gray is higher, there is a barrier. The permeability was integrated exactly in the matrix
assembly for the fine-scale problem.
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Figure 5.9: The number of iterations required is plotted versus the base-10 logarithm of the
ratio of permeabilities from Figure 5.8. As before, the fixed H case is shown at left, and
the fixed H/h case at right. The results for the damped naive Newton method are shown
in the first row, and the geometric Newton method in the second. Color labels the varying
resolutions in 1/h.
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(increasing resolution).

There is a plateau in the data at ω0 = 0.2 because that is the level of the initial guess

for the initial damping. For some levels of heterogeneity this was good enough, and the

algorithm left it alone. There is also a plateau at ω0 = 1; that indicates a full (undamped)

Newton step was taken. It is no surprise that this only occurs at or near constant coefficients.
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Figure 5.10: The initial damping ω0 appears to be sensitive to the size of the jumps in
the permeability. Plotted above are estimates for the initial damping versus the base-10
logarithm of the maximum to minimum ratio of the permeability. The plots in the top row
are for the channel/barrier permeability field of Figure 5.8; those in the second row are for
the scaled sample permeability field of Figure 5.5. The plots on the left have ω0 on the
vertical scale; those on the right have log10 ω0. The labels for the colors are 1/h. The coarse
grid size H was fixed for these experiments.
The above diagrams actually reflect data from a mixed element implementation (with
lowest-order Raviart–Thomas elements) of the same problem. Presumably, similar results
hold for Galerkin elements.
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Chapter 6

Other similarly-featured

algorithms for “linear” problems

Many other researchers in multiscale approximation have attempted to modify their coarse

basis shapes (form coarse macro elements) to obtain a better multiscale approximation to

a fine-scale problem. For instance, see the review in [30], or the papers [44, 45, 17, 31, 84,

7, 5, 6, 14, 15, 16, 48, 1, 2]. However, these are all one-shot calculations: a single collection

of basis shapes is calculated for a given right-hand side, the multiscale approximation using

these shapes is calculated, and the process stops there. (At least within a single time step

in a parabolic problem.) On the other hand, our algorithm continues adjusting (refining)

these shapes using feedback via the residual.

Current iterative algorithms for linear problems — such as multigrid and Krylov

methods — all have linear convergence. Multigrid generally does perform independent of

the resolution, but conjugate gradients with a typical smoother does not. On the other

hand, the performance of both tends to degrade in the face of strong heterogeneities (jumps

in the coefficients, ill-shaped elements, et cetera). In contrast, as we detail below, there are

algorithms that get quadratic convergence on problems that are (ostensibly) linear, and at

least one algorithm that gets convergence at a rate independent of jumps of the coefficients

in a problem. However, significant differences exist between these problems and algorithms

and ours.

6.1 Quadratic convergence on linear problems

Solving linear systems involves nonlinear operations, namely, division. At first blush, one

might expect that iterative algorithms for solving linear systems can achieve superlinear

convergence since Newton’s method does for nonlinear ones. However, only a handful of
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algorithms for linear problems have this property. We detail three kinds here: two for

solving linear systems of equations (one is specific to Toeplitz systems), and one for finding

the minimizer of the norm of the residual of an over-determined linear system.

General linear systems

In 1933, Schulz [75] described the iteration R← R+R(I−AR) where R is an approximate

inverse of A. This iteration has quadratic convergence; for instance, it is Newton’s method

applied to the objective f(R) = R−1 − A. It also has the feature that updates to R

only require multiplication and addition. However, this iteration suffers from a number of

problems in applying it in practice to the solution of linear systems. One such problem is

that of fill-in: if A is sparse, and even if initially R is sparse, then after a few iterations R

will not be sparse. Another problem is that the initial approximation R must be sufficiently

close (like for Newton’s method). In 1996, Brezinski [13] gave some more abstract sufficient

conditions for such an matrix update to have superlinear convergence (either the matrix R

to A−1 or as applied to a right-hand side through the norm of the residual going to zero);

however, he gave only the iteration above as an example that satisfied those conditions.

Our method is different in that we do not strive to compute the inverse (which would

allow us to solve a linear system with any right-hand side). We focus on changing the matrix

Aβ so that we get the solution for one right-hand side only (like most iterative methods do).

That is, instead of a subspace correction to a solution, we attempt to modify the subspace

Vβ so the subspace “correction” is perfect. This subspace will almost surely be different for

different right-hand side data.

Schulz’s iteration can be modified so that one calculates the effect of the (approx-

imate) inverse on a single right-hand side; however, it cannot be computed recursively

without computing the update to the matrix R as well (requiring its storage). It could be

an efficient procedure if one wanted to compute the solution for many right-hand sides, say,

a number proportional to the number of unknowns.

There are other fixed point iterations with quadratic convergence, but they too suffer

from the same difficulties as Schulz’s method. For instance, Beavers and Denman in [9],

and Mastroserio and Montrone in [59] both describe quadratically convergent schemes for

the inverse. Mastroserio and Montrone’s requires only multiplications and additions. (Both

papers solve a more general Lyapunov system, but Beavers and Denman assume the inverse

of a linear system is an available operation. With the modification of Hoskins, Meek, and

Walton [42, 43] with B = 0, their method can be used to solve linear systems.)
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Toeplitz systems

A Toeplitz matrix has entries that are constant along diagonals. This special structure can

be exploited in developing solvers for Toeplitz systems. For instance, there are iterative

solvers for Toeplitz systems that achieve quadratic convergence such as those of Brent,

Gustavson, and Yun in [11]; and Linzer and Vetterli in [58]. The method described in these

two papers is a little simpler for symmetric systems; we detail it here.

A symmetric Toeplitz matrix A can be specified by just its first column. If A is non-

singular, its inverse A−1 is also a symmetric Toeplitz matrix. If we wish to solve the n× n

system Ax = y, we can calculate x = A−1y using O(n log n) operations if we know the first

column c of A−1. This is possible through the FFT-like property of Toeplitz matrix-vector

multiply and the Gohberg–Semencul formula. This formula says:

A−1 =
1

b0

(

L

(

b0

b

)

LT

(

b0

b
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− L
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0
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0
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where L(z) is the lower triangular Toeplitz matrix with first column z, the vector c =

(b0, b
T )T is the first column of A−1, the scalar b0 is the first entry of c, the vector b

represents the other entries of c, and the vector b̃ has the components of b listed in reverse

order. Thus, once we know c, we can calculate x = A−1y using O(4n log n) operations.

We can calculate c by solving the system Ac = e1 using an iterative method. In the

Gohberg–Semencul formula, if we have an approximation (ξ0, ξ
T )T for c, we can write an

approximate inverse as

A−1 ≈ N

(

ξ0

ξ

)

=
1

ξ0

(

L

(

ξ0

ξ

)

LT

(

ξ0

ξ

)

− L

(

0

ξ̃

)

LT

(

0

ξ̃

))

.

Then a Jacobi-like algorithm is:

1. Pick a guess-timate for c;

2. Calculate the residual r = e1 −Ac;

3. Update c← c + N(c)r; and

4. Repeat until the residual is small.

The key is that as the solution vector c is improved we can use it to improve our estimate

of A−1. This feedback gives quadratic convergence to the solution as opposed the usual

linear convergence where our estimate of A−1 is fixed. This phenomenon is similar to our

algorithm where we use our solution Iβuβ (via its residual rβ) to update the problem Aβ we

solve.
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Overdetermined linear systems with l1 or l∞ minimization

Suppose we wish to solve the minimization problem argminu ‖f − Au‖ where the linear

system Au = f is overdetermined, and where we use either the l1 norm or the l∞ norm

to measure the residual. There are algorithms that find a sequence of uk that converge

quadratically to the solution u∞; see, for instance, the results by Coleman and Li in [19, 20].

This is not too surprising since it is known that this type of minimization problem is

equivalent to solving a linear program.1 Since the development of the ellipsoid algorithm

by Khachiyan [55], many so-called “interior point” iterative algorithms for solving linear

programs have been developed all of which produce a sequence that converges quadratically

to the solution. There are, for instance, the Karmarkar [53], Mehrotra [61], and Mizuno–

Todd–Ye algorithms [88, 89, 86, 87]. See the textbooks [70, 83, 85] or the reviews [36, 69, 68]

for more information.

These algorithms get quadratic convergence and are insensitive to the size of the

system (number of unknowns), but require a linear solve at each step of a size usually near

or at the number of unknowns in size (the number of “active” constraints). That is, applied

to solving Au = f they would terminate in one step by computing u = A−1f directly.

Also, these algorithms may be sensitive to the condition number of the system solved

during the step. However, the work of Vavasis on equilibrium systems in [79] (related to

the work by Stewart, O’Leary, and Forsgren referenced above in Section 5.3) can be applied

to eliminate some of this sensitivity (the sensitivity, at least, to the duality gap — the

proximity of the current iterate to the feasible region boundary).

6.2 Insensitivity to jumps

With regards to insensitivity to jumps in the coefficients of a problem, the author is only

aware of one other algorithm that has such a property. Tausch and White in [78] describe

an electromagnetics problem where there are dielectric materials next to conductors. This

results in high contrasts of the permittivity ratio on short length scales.

Using the equivalent charge formulation, one effectively computes a polarization

charge across the dielectric and a conductor charge. Because of the high ratio in permit-

tivity, these two can differ by many orders of magnitude; the simultaneous calculation of

the differently scaled quantities is numerically challenging. The algorithm proceeds by sep-

arating the problem of interest in two stages. In the first stage the dielectric is replaced

with one of infinite permittivity; this allows for a fairly accurate computation of charges on

1Both papers describe how to re-write a minimization problem as a linear program; both papers also offer
the reasonable advice that an algorithm tailored for a minimization problem probably will fare better than
a general linear programming algorithm.
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the surfaces between the conductors and the dielectrics. The following second stage solves

a perturbation problem where the dielectric constant is reduced from infinity to a finite

value. The result is an algorithm where work and accuracy are bounded independent of the

contrast in permittivity.

There is a difference, however, between this problem and ours. Our problem is

challenging because it is ill-conditioned. The above electromagnetics problem suffers from

poor scaling. Quoting Tausch and White: “This ... makes clear that the accuracy problem

of the equivalent charge formulation is not ill-conditioning but a scaling problem.”
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Chapter 7

Conclusions and future directions

We have introduced an iterative algorithm for solving large, sparse, ill-conditioned linear

systems. Implemented exactly, the algorithm has monotone, global convergence with a

quadratic asymptotic rate. Several of the steps in the algorithm are computationally infea-

sible; first among them is the need for an error estimate at each iteration. Assuming such

an estimate is provided, some computational experience indicates that the other approxi-

mations we have introduced do not affect the convergence properties of the exact algorithm.

As implemented, each iteration is computationally cheap, and convergence is fast.

The very next step in our work will be to test our algorithm as an accelerator. As

mentioned before, it seems reasonable to pair our algorithm with a smoother. Established

results on inexact Newton methods tell us the error tolerance on the inner iteration needs to

get tighter as outer iterations progress in order to maintain superlinear or quadratic conver-

gence. The important practical question, though, is: how many inner iterations (smooth-

ings) does it take to achieve that tolerance? It would need to be a fixed or slowly increasing

number for our algorithm to be viable. In tandem with computational experiments would

be theoretical work to establish the properties of our algorithm as an accelerator.

Our computational experience also indicated that, as a stand-alone method, the al-

gorithm is insensitive to the resolution and heterogeneity of the problem to be solved. Some

theoretical notions also support this idea, but we have yet to produce a proof. The insen-

sitity to heterogeneity apparently is a peerless property of our algorithm. Computational

experience has also shown that the other approximations introduced to made the algorithm

feasible do not impact performance. Some theoretical footing for this observation would

be welcome. Further study is also needed to determine the dependence on the size of the

coarse problem (or the level of upscaling).

Even though we solve a simple linear system, our research benefits Darcy flow model-

ing because, in problems of practical interest, permeability often is given at high-resolution
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and is heterogeneous. The insensitivity of our algorithm to this ill-conditioning means that a

wider variety of problems is computationally feasible. Further benefits accrue when consid-

ering more sophisticated models than single-phase, steady-state flow. In a time dependent

problem with an implicit time stepping scheme, one solves a linear system at each time step.

In optimizing the production from a reservoir, one wants to pick the best well placement,

injection and pumping rates, and so on; this is an inverse problem which requires solving

a number of forward problems (ours). The permeability fields used in flow simulations are

often simulated themselves; to get a sense for the statistical propertities of quantities pre-

dicted from the flow field, one often computes flows for an ensemble of many realizations of

permeability fields (each of which requires its own flow simulation). Nonlinear flow prob-

lems must be linearized at each solution iteration; problems like ours result. In each context

above, we want to solve many, many linear systems just like ours as quickly as possible.

Shortening the time it takes to do so would be an important advance (even if we contribute

nothing directly to each of these interesting and important problems).

7.1 Possible improvements

Recursion (a multilevel method) is a natural generalization. This can be accomplished by

aggregating coarse basis shapes into a super-coarsened system the same way that fine-scale

shapes were. There are at least two ways to incorporate this into the algorithm. In the first

case, we simply incorporate more degrees of freedom into the nonlinear side of the problem.

This expense is offset somewhat by reducing the size of the coarse linear system to be solved

at each iteration. In another strategy, one could apply our algorithm as an iterative solver to

the coarse problem solve required in each iteration. This way the extra degrees of freedom

on the nonlinear side are solved for in stages instead of all at once. Which strategy reduces

the overall solution time while keeping robustness is an interesting question to investigate.

As an aside, the coarse system resulting from our two-level procedure is denser (more off-

diagonal terms) than the original fine system; however, using recursion to solve this system

results in no further increases in density.

The coarse system that we solve at each iteration has more degrees of freedom than

the usual multiscale’s coarse system (about three times as many in 2-D and seven times as

many in 3-D for rectangular grids). We can combine the three spaces Vcorner, Vβ,edge, and

Vβ,face for computational efficiency in the coarse solves. That is, the shape parameters can

be used to determine corner shapes alone. However, this reduction of computation comes at

the expense of analytical problems. For instance, the overlapping shape parameters mean

the ranges of the Vec are no longer independent. Additionally, if the shapes along every

coarse edge of a coarse patch are set so that there is no net flux through each edge, then the
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coarse system will be singular — there is a Neumann-like problem implied on said coarse

patch.

In the mixed case, this is comparable to having shape parameters all along a coarse

edge. (Whereas, in a parallel to the continuous Galerkin elements, there would be a unit flow

all along an edge combined with edge “bubbles” with no net flow.) Computationally, we can

leave out the additional elements and adjust the full edge so long as the normalized shape

has a net flow bigger than a fixed tolerance (and switch back when the edge-normalized

coarse solution is bigger than the tolerance).1 There are no problems with overlapping with

mixed elements.

In the matter of initialization, we noted theoretically the almost sure global con-

vergence and suggested practically the naive initialization of uniform shapes (β = 1). We

cannot use the zero shapes (β = 0) as we know this is a fixed point of our Newton iteration.

Although it is possible that uniform shapes will result in a poor start, as a practical matter

multiscale algorithms have already shown themselves to produce a very good approximation

to the fine-scale solution. Save for an odd source term, indeed, we are likely to already start

very close to the solution. As was noted in chapter 6, though, other researchers have tried

to improve on their multiscale solution procedures. One improvement that could be readily

adapted to give us a better initialization would be to use the implied edge shapes of the

coarse macro-elements of [1].

7.2 Extensions to other problems

As a trivial extension, we note that symmetry of the system is not needed; a positive definite

symmetric part will do.

Substantial work has been done to establish these methods for mixed elements, in

particular, lowest-order Raviart–Thomas elements. Indeed, the mixed element formulation

was our original inspiration. Like with the continuous Galerkin elements, this method can

be expressed in an algebraic fashion; we believe it can be applied to any equilibrium system.

We conjecture that our method can be applied to other discretizations, too, such as

discontinuous Galerkin elements, cell-centered finite differences, and finite volume methods.

Higher order finite element methods seem ripe as well by optimizing shapes that have control

points on the boundary of elements. We expect that our techique can be applied to other

partial differential equations such as for Stokes flow or linear elasticity.

1This, of course, raises the question of how to set the tolerance appropriately. However, for normalized
shapes, it is not some nebulous quantity but a simple percentage of the magnitude of the shape.

73



Bibliography

[1] J. E. Aarnes, On the use of a mixed multiscale finite element method for greater
flexibility and increased speed or improved accuracy in reservoir simulation, Multiscale
Modeling and Simulation, 2 (2004), pp. 421–439.

[2] J. E. Aarnes, S. Krogstad, and K.-A. Lie, A hierarchical multiscale method for
two-phase flow based upon mixed finite elements and nonuniform coarse grids, Multi-
scale Model. Simul., (2006, to appear).

[3] R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub,
Newton’s method on Riemannian manifolds and a geometric model for the human spine,
IMA Journal of Numerical Analysis, 22 (2002), pp. 359–390.

[4] B. Aksoylu, H. Klie, and M. Wheeler, Physics-based preconditioners for porous
media flow applications, In preparation.

[5] T. Arbogast, Analysis of a two-scale, locally conservative subgrid upscaling for elliptic
problems, SIAM J. Numer. Anal., 42 (2004), pp. 576–598.

[6] T. Arbogast and K. J. Boyd, Subgrid upscaling and mixed multiscale finite ele-
ments, SIAM J. Numer. Anal., 44 (2006), pp. 1150–1171.

[7] T. Arbogast, S. E. Minkoff, and P. T. Keenan, An operator-based approach
to upscaling the pressure equation, in Computational Methods in Water Resources
XII, Vol. 1: Computational Methods in Contamination and Remediation of Water
Resources, V. N. Burganos et al., eds., Southampton, U.K., 1998, Computational Me-
chanics Publications, pp. 405–412.

[8] J. Bear, Dynamics of Fluids in Porous Media, Dover, New York, 1972.

[9] A. N. Beavers, Jr. and E. D. Denman, A new solution method for the Lyapunov
matrix equation, SIAM Journal on Applied Mathematics, 29 (1975), pp. 416–421.

[10] A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and applica-
tions, Springer-Verlag, New York, second ed., 2003.

[11] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun, Fast solution of Toeplitz
systems of equations and computation of Padé approximations, Journal of Algorithms,
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